J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (3): 537-556.doi: 10.1007/s12204-022-2474-x
顾星海,花豹,刘亚辉,孙学民,鲍劲松
收稿日期:2021-08-06
接受日期:2021-11-08
出版日期:2024-05-28
发布日期:2024-05-28
GU Xinghai(顾星海), HUA Bao(花豹), LIU Yahi(刘亚辉), SUN Xuemin(孙学民), BAO Jinsong∗(鲍劲松)
Received:2021-08-06
Accepted:2021-11-08
Online:2024-05-28
Published:2024-05-28
摘要: 装配工艺文档记录了工艺设计者的意图或知识。然而,由于其表格形式和非结构化的自然语言文本,普通知识抽取方法不适合于处理装配工艺文档。本文提出了一种面向装配工艺文档的装配语义实体识别与关系构建方法。首先,通过有效区域识别和单元格划分,从表格中提取装配工艺语句,并将其存储为键-值对象文件。然后,面向装配操作类型,通过基于注意力机制的序列标注模型识别语句中的语义实体,并设计句法规则实现实体间关系的自动构建。最后,通过使用自建的语料库,证明了该方法提出的序列标注模型在处理装配工艺设计语言时比主流的命名实体识别模型表现更好。并且,通过小规模真实场景下的仿真实验与人工方法进行比较,证明了该方法的有效性。结果表明,该方法可以帮助设计者自动、有效地积累知识。
中图分类号:
顾星海, 花豹, 刘亚辉, 孙学民, 鲍劲松. 面向装配工艺文档的装配语义实体识别与关系构建方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 537-556.
GU Xinghai (顾星海), HUA Bao(花豹), LIU Yahui(刘亚辉), SUN Xuemin(孙学民), BAO Jinsong∗(鲍劲松). Semantic Entity Recognition and Relation Construction Method for Assembly Process Document[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 537-556.
| [1] CHEN J H, JIA X L. An approach for assembly process case discovery using multimedia information source [J]. Computers in Industry, 2020, 115: 103176. [2] ZHANG S Y, GE W Q, WANG Z L, et al. A heuristic configuration solving process planning method for mechanical product configuration by imitating the crystal crystallization process [J]. The International Journal of Advanced Manufacturing Technology, 2021, 116(1/2): 611-628. [3] KRETSCHMER R, PFOUGA A, RULHOFF S, et al. Knowledge-based design for assembly in agile manufacturing by using Data Mining methods [J]. Advanced Engineering Informatics, 2017, 33: 285-299. [4] KUTIN A, DOLGOV V, SEDYKH M, et al. Integration of different computer-aided systems in product designing and process planning on digital manufacturing [J]. Procedia CIRP, 2018, 67: 476-481. [5] OTTER D W, MEDINA J R, KALITA J K. A survey of the usages of deep learning for natural language processing [J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(2): 604-624. [6] JI S X, PAN S R, CAMBRIA E, et al. A survey on knowledge graphs: Representation, acquisition, and applications [J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2): 494-514. [7] ZHAO M X, WANG H, GUO J, et al. Construction of an industrial knowledge graph for unstructured Chinese text learning [J]. Applied Sciences, 2019, 9(13): 2720. [8] CHEN Z Y, BAO J S, ZHENG X H, et al. Semantic recognition method of assembly process based on LSTM [J]. Computer Integrated Manufacturing Systems, 2021(6): 1582-1593 (in Chinese). [9] LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition [C]//2016 Conference of the North American Chapter of the Association for Computational Linguistics. San Diego, CA: ACL, 2016: 260-270. [10] DEVLIN J, CHANG M W, LEE K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding [DB/OL]. (2019-05-24). https://arxiv.org/abs/1810.04805. [11] DAI Z J, WANG X T, NI P, et al. Named entity recognition using BERT BiLSTM CRF for Chinese electronic health records [C]//2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. Suzhou: IEEE, 2019: 1-5. [12] JIA C, SHI Y F, YANG Q R, et al. Entity enhanced BERT pre-training for Chinese NER [C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2020: 6384-6396. [13] SYED M H, CHUNG S T. MenuNER: domain-adapted BERT based NER approach for a domain with limited dataset and its application to food menu domain [J]. Applied Sciences, 2021, 11(13): 6007. [14] ZHANG J Y, HE G H, DAI Z, et al. Named entity recognition of enterprise annual report integrated with BERT [J]. Journal of Shanghai Jiao Tong University, 2021, 55(2): 117-123 (in Chinese). [15] CHEN L, XU S, ZHU L J, et al. A deep learning based method for extracting semantic information from patent documents [J]. Scientometrics, 2020,125(1): 289-312. [16] GIORGI J, WANG X D, SAHAR N, et al. End-toend named entity recognition and relation extraction using pre-trained language models [DB/OL]. (2019-12-20). https://arxiv.org/abs/1912.13415. [17] ZHENG S C, WANG F, BAO H Y, et al. Joint extraction of entities and relations based on a novel tagging scheme [C]//55th Annual Meeting of the Association for Computational Linguistics. Vancouver: ACL, 2017: 1227-1236. [18] WEI Z P, SU J L, WANG Y, et al. A novel cascade binary tagging framework for relational triple extraction [C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2020: 1476-1488. [19] LI J, SUN A X, HAN J L, et al. A survey on deep learning for named entity recognition [J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(1): 50-70. [20] ZHANG N N, WANG P Y, ZHANG G P. Named entity deep learning recognition method for process operation description text [J]. Computer Applications and Software, 2019, 36(11): 188-195 (in Chinese). [21] IMPEDOVO S, OTTAVIANO L, OCCHINEGRO S. Optical character recognition — a survey [J]. International Journal of Pattern Recognition and Artificial Intelligence, 1991, 5(1n02): 1-24. [22] BOUKHAROUBA A. A new algorithm for skew correction and baseline detection based on the randomized Hough Transform [J]. Journal of King Saud University-Computer and Information Sciences, 2017, 29(1): 29-38. |
| [1] | . 基于ALBERT的中国诗酒文化命名实体识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1065-1072. |
| [2] | . CenterLineFormer:基于单车载相机的车道中心线生成方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1009-1017. |
| [3] | . 基于多注意力机制的轻量化人体姿态估计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 899-910. |
| [4] | . 基于多特征提取方法的多场景烟雾检测[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 866-879. |
| [5] | . 迁移学习和注意机制融合用于CT图像COVID-19病灶分割的计算机辅助诊断[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 566-581. |
| [6] | 王可, 刘奕阳, 杨杰, 鲁爱国, 李哲, 徐明亮. 基于自适应特征增强和融合的舰载机着舰拉制状态识别[J]. 上海交通大学学报, 2025, 59(2): 274-282. |
| [7] | 丁黎辉1, 2, 付立军1, 3, 杨光4, 5, 6, 万林4, 5, 常志军7. 基于视频的婴儿癫痫性痉挛综合征检测:建模、检测与评估[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 1-9. |
| [8] | 徐旺旺1,2,许良凤1,2,刘宁徽3,律娜3. 基于多注意力卷积神经网络的乳腺癌组织学图像诊断[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 91-106. |
| [9] | 李楚晨, 唐善军, 赵冰青. 一种基于无人机探测图像区块信息的弱小目标检测算法[J]. 空天防御, 2025, 8(1): 41-47. |
| [10] | 李利娟, 刘海, 刘红良, 张青松, 陈永东. 融合外部注意力机制的序列到点非侵入式负荷分解[J]. 上海交通大学学报, 2024, 58(6): 846-854. |
| [11] | 周成, 蒋祖华. 融入优质主题和注意力机制的设计规范命名实体识别方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1169-1180. |
| [12] | 彭诗玮1, 张希1, 朱旺旺1, 窦瑞2. 融合乘客感受量化指标的智能汽车舒适性研究[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1063-1070. |
| [13] | 李翠明, 王华, 徐龙儿, 王龙. 基于改进DeepLabv3+的光伏电站道路识别方法[J]. 上海交通大学学报, 2024, 58(5): 776-782. |
| [14] | 鄢丛强1,2, 郭正玉3,4, 蔡云泽 1,2. 基于改进CycleGAN的SAR图像舰船尾迹数据增强[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 702-711. |
| [15] | 陈昊蓝, 靳冰莹, 刘亚东, 钱庆林, 王鹏, 陈艳霞, 于希娟, 严英杰. 基于门控循环注意力网络的配电网故障识别方法[J]. 上海交通大学学报, 2024, 58(3): 295-303. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||