J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (1): 1-9.doi: 10.1007/s12204-024-2789-x
• • 下一篇
丁黎辉1,2,付立军1,3,杨光4,5,6,万林4,5,常志军7
接受日期:
2024-08-25
出版日期:
2025-01-28
发布日期:
2025-01-28
DING Lihui1,2(丁黎辉), FU Lijun1,3* (付立军), YANG Guang4(杨光), WAN Lin4,5 (万林), CHANG Zhijun7(常志军)
Accepted:
2024-08-25
Online:
2025-01-28
Published:
2025-01-28
摘要: 基于临床观察的行为评分仍然是筛查、诊断和评估婴儿癫痫性痉挛综合征(IESS)的金标准。准确识别痉挛发作对于临床诊断和评估至关重要。本研究提出了一种基于视频特征识别的创新性痉挛检测方法。为了有效捕捉视频中痉挛行为的时间特征,引入了非对称卷积和CBR模块。具体来说,在3D-ResNet残差块中,将较大的卷积核拆分为两个非对称3D卷积核,这些卷积核串联连接,以增强卷积层在水平和垂直方向提取局部关键特征的能力。此外,引入了3D-CBAM注意力模块,高效增强视频帧通道之间的空间相关性。为了提高模型的泛化能力,设计了一种复合损失函数,将交叉熵损失与三元组损失结合,以平衡分类需求和相似性要求。使用PLA IESS-VIDEO数据集对我们的方法进行了训练和评估,取得了90.59%的平均痉挛识别准确率、90.94%的精准率和87.64%的召回率。为了进一步验证其泛化能力,使用六个不同的患者监测视频进行外部验证,并与来自多个医疗中心的六位专家的评估结果进行对比。最终测试结果表明:我们的方法达到了0.6476的灵敏度,超过了人类专家的平均水平0.5595,同时获得了0.7219的高F1分数。这些发现对长期评估婴儿癫痫性痉挛综合征患者具有重要意义。
中图分类号:
丁黎辉1, 2, 付立军1, 3, 杨光4, 5, 6, 万林4, 5, 常志军7. 基于视频的婴儿癫痫性痉挛综合征检测:建模、检测与评估[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 1-9.
DING Lihui1, 2(丁黎辉), FU Lijun1, 3 (付立军), YANG Guang4(杨光), WAN Lin4, 5 (万林), CHANG Zhijun7(常志军). Video-Based Detection of Epileptic Spasms in IESS: Modeling, Detection, and Evaluation[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 1-9.
[1] DING D, ZHOU D, SANDER J W, et al. Epilepsy in China: Major progress in the past two decades [J]. The Lancet Neurology, 2021, 20(4): 316-326. [2] PELLOCK J M, HRACHOVY R, SHINNAR S, et al. Infantile spasms: A U.S. consensus report [J]. Epilepsia, 2010, 51(10): 2175-2189. [3] WANG Z, FU L J, YANG G, et al. Mixture of expert system for IESS detection based on EEG signal [J/OL]. Journal of Shanghai Jiao Tong University (Science),2024. https://doi.org/10.1007/s12204-024-2771-7 [4] KARACSONY T, JENI L A, DE LA TORRE F, et al.Deep learning methods for single camera based clinical in-bed movement action recognition [J]. Image and Vision Computing, 2024, 143: 104928. [5] ZHANG C B, SABOR N, LUO J W, et al. Automatic removal of multiple artifacts for single-channel electroencephalography [J]. Journal of Shanghai Jiao Tong University (Science), 2022, 27(4): 437-451. [6] WU J Y, ZHOU T S, GUO Y F, et al. Video-based evaluation system for tic action in Tourette syndrome: Modeling, detection, and evaluation [J]. Health Information Science and Systems, 2023, 11(1): 39. [7] HALEEM A, JAVAID M, SINGH R P, et al. Telemedicine for healthcare: Capabilities, features, barriers, and applications [J]. Sensors International,2021, 2: 100117. [8] LOWE T L, CAPRIOTTI M R, MCBURNETT K. Long-term follow-up of patients with Tourette’s syndrome [J]. Movement Disorders Clinical Practice, 2019, 6(1): 40-45. [9] AHMEDT-ARISTIZABAL D, ALI ARMIN M, HAYDER Z, et al. Deep learning approaches for seizure video analysis: A review [J]. Epilepsy & Behavior, 2024, 154: 109735. [10] YANG Y H, SARKIS R A, ATRACHE R E, et al. Video-based detection of generalized tonic-clonic seizures using deep learning [J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(8): 2997-3008. [11] EGUCHI K, YAGUCHI H, NAKAKUBO S, et al. Video-based detection of epileptic spasms in West syndrome using a deep neural network: A pilot case study [J]. Journal of the Neurological Sciences, 2023, 449:120671. [12] MYSZCZYNSKA M A, OJAMIES P N, LACOSTE A M B, et al. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases [J]. Nature Reviews Neurology, 2020, 16(8): 440-456. [13] JAVEED A, DALLORA A L, BERGLUND J S, et al. Machine learning for dementia prediction: A system atic review and future research directions [J]. Journal of Medical Systems, 2023, 47(1): 17. [14] MESQUITA I A, PINHEIRO A R V, VELHOTE CORREIA M F P, et al. Methodological considerations for kinematic analysis of upper limbs in healthy and poststroke adults. part I: A systematic review of sampling and motor tasks [J]. Topics in Stroke Rehabilitation, 2019, 26(2): 142-152. [15] DASH D P, KOLEKAR M, CHAKRABORTY C, et al. Review of machine and deep learning techniques in epileptic seizure detection using physiological signals and sentiment analysis [J]. ACM Transactions on Asian and Low Resource Language Information Processing, 2024, 23(1): 16. [16] TURAEV S, AL-DABET S, BABU A, et al. Review and analysis of patients’ body language from an artificial intelligence perspective [J]. IEEE Access, 2023,11: 62140-62173. [17] SUN Z H, KE Q H, RAHMANI H, et al. Human action recognition from various data modalities: A review [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3200-3225. [18] QUAN W, CAI Y Q, WANG C, et al. VR sickness estimation model based on 3D-ResNet two-stream network [J]. Journal of Zhejiang University (Engineering Science), 2023, 57(7): 1345-1353 (in Chinese). [19] NIU W H, ZHAI R B. A video human behavior recognition method based on improved 3D ResNet [J]. Computer Engineering & Science, 2023, 45(10): 1814-1821(in Chinese). [20] VUONG G H, TRAN M T. Resnet video 3D for gait retrieval: A deep learning approach to human identification [C]//12th International Symposium on Information and Communication Technology. Ho Chi Minh: ACM, 2023: 886-892. [21] PEREZ-GARCIA F, SCOTT C, SPARKS R, et al. Transfer learning of deep spatiotemporal networks to model arbitrarily long videos of seizures [M]//Medical image computing and computer assisted intervention– MICCAI 2021. Cham: Springer, 2021: 334-344. |
[1] | 徐旺旺1,2,许良凤1,2,刘宁徽3,律娜3. 基于多注意力卷积神经网络的乳腺癌组织学图像诊断[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 91-106. |
[2] | 周成, 蒋祖华. 融入优质主题和注意力机制的设计规范命名实体识别方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1169-1180. |
[3] | 彭诗玮1, 张希1, 朱旺旺1, 窦瑞2. 融合乘客感受量化指标的智能汽车舒适性研究[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1063-1070. |
[4] | 李利娟, 刘海, 刘红良, 张青松, 陈永东. 融合外部注意力机制的序列到点非侵入式负荷分解[J]. 上海交通大学学报, 2024, 58(6): 846-854. |
[5] | 李翠明, 王华, 徐龙儿, 王龙. 基于改进DeepLabv3+的光伏电站道路识别方法[J]. 上海交通大学学报, 2024, 58(5): 776-782. |
[6] | 鄢丛强1,2, 郭正玉3,4, 蔡云泽 1,2. 基于改进CycleGAN的SAR图像舰船尾迹数据增强[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 702-711. |
[7] | 黄权印, 蔡益朝, 李浩, 唐晓, 王辰洋. 基于改进注意力机制的自适应航迹预测方法[J]. 空天防御, 2024, 7(3): 94-101. |
[8] | 陈昊蓝, 靳冰莹, 刘亚东, 钱庆林, 王鹏, 陈艳霞, 于希娟, 严英杰. 基于门控循环注意力网络的配电网故障识别方法[J]. 上海交通大学学报, 2024, 58(3): 295-303. |
[9] | 顾星海,花 豹,刘亚辉,孙学民,鲍劲松. 面向装配工艺文档的装配语义实体识别与关系构建方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 537-556. |
[10] | 张彦军1,4,5,6,7, 王碧云2,3 , 蔡云泽1,4,5,6,7. 基于注意力的多通道网络红外弱小目标检测[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 414-427. |
[11] | 陈坤1, 2, 赵旭1, 董春玉1, 邸子超1, 陈宗枝1. 基于滤波器预测的抗遮挡目标跟踪算法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 400-413. |
[12] | 曾志贤,曹建军,翁年凤,袁震,余旭. 基于细粒度联合注意力机制的图像-文本跨模态实体分辨[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 728-737. |
[13] | 高涛, 文渊博, 陈婷, 张静. 基于窗口自注意力网络的单图像去雨算法[J]. 上海交通大学学报, 2023, 57(5): 613-623. |
[14] | 曹现刚1, 2,雷卓1,李彦川1,张梦园1,段欣宇1. 基于Self-Attention-LSTM神经网络的设备剩余寿命预测方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 652-664. |
[15] | 万安平, 杨洁, 缪徐, 陈挺, 左强, 李客. 基于注意力机制与神经网络的热电联产锅炉负荷预测[J]. 上海交通大学学报, 2023, 57(3): 316-325. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 51
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 418
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||