上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (2): 274-282.doi: 10.16183/j.cnki.jsjtu.2023.263
王可1,2,3, 刘奕阳1, 杨杰1, 鲁爱国4, 李哲1, 徐明亮1,2,3()
收稿日期:
2023-06-25
修回日期:
2023-06-28
接受日期:
2023-07-11
出版日期:
2025-02-28
发布日期:
2025-03-11
通讯作者:
徐明亮,教授,博士生导师,电话(Tel.):0371-67781257;E-mail:iexumingliang@zzu.edu.cn.
作者简介:
王 可(1985—),博士,讲师,从事机器学习、神经计算理论与应用研究.
基金资助:
WANG Ke1,2,3, LIU Yiyang1, YANG Jie1, LU Aiguo4, LI Zhe1, XU Mingliang1,2,3()
Received:
2023-06-25
Revised:
2023-06-28
Accepted:
2023-07-11
Online:
2025-02-28
Published:
2025-03-11
摘要:
拉制状态识别能辅助着舰信号官及时准确地形成后续指挥决策,是舰载机着舰引导的重要环节.提出一种基于自适应特征增强和融合的拉制状态识别方法,包含基于注意力机制的特征增强模块,通过分割特征图、串联空间域和通道域增强视觉表征能力;利用多尺度特征融合模块,将高分辨率浅层特征与语义信息丰富的深层特征进行融合,充分利用上下文语义信息.基于所提方法,设计基于可穿戴增强现实设备的着舰拉制状态识别原型系统;构建着舰作业虚实融合数据集以评估方法性能.结果表明,所提算法综合性能优于基线算法,能满足拉制状态识别的应用需求.
中图分类号:
王可, 刘奕阳, 杨杰, 鲁爱国, 李哲, 徐明亮. 基于自适应特征增强和融合的舰载机着舰拉制状态识别[J]. 上海交通大学学报, 2025, 59(2): 274-282.
WANG Ke, LIU Yiyang, YANG Jie, LU Aiguo, LI Zhe, XU Mingliang. Landing State Recognition of Carrier-Based Aircraft Based on Adaptive Feature Enhancement and Fusion[J]. Journal of Shanghai Jiao Tong University, 2025, 59(2): 274-282.
[1] | 王可, 徐明亮, 李亚飞, 等. 一种面向航空母舰甲板运动状态预估的鲁棒学习模型[J]. 自动化学报, 2024, 50(9): 1785-1793. |
WANG Ke, XU Mingliang, LI Yafei, et al. A robust learning model for deck motion prediction of aircraft carrier[J]. Acta Automatica Sinica, 2024, 50(9): 1785-1793. | |
[2] | 李亚飞, 吴庆顺, 徐明亮, 等. 基于强化学习的舰载机保障作业实时调度方法[J]. 中国科学: 信息科学, 2021, 51(2): 247-262. |
LI Yafei, WU Qingshun, XU Mingliang, et al. Real-time scheduling for carrier-borne aircraft support operations: A reinforcement learning approach[J]. Scientia Sinica (Informationis), 2021, 51(2): 247-262. | |
[3] | 薛均晓, 徐明亮, 李亚飞, 等. 面向航空母舰电子显灵板的多智能体建模技术研究进展[J]. 计算机辅助设计与图形学学报, 2021, 33(10): 1475-1485. |
XUE Junxiao, XU Mingliang, LI Yafei, et al. Research progress of multi-agent technology for aircraft carrier electronic display panel[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(10): 1475-1485. | |
[4] | 王华, 韩璐, 楚世理, 等. 基于Frenet标架下三维元胞自动机的航母舰载机集群运动建模[J]. 计算机辅助设计与图形学学报, 2018, 30(9): 1719-1727. |
WANG Hua, HAN Lu, CHU Shili, et al. Shipboard aircraft swarm modeling using a 3D cellular automata model under the frenet frame[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(9): 1719-1727. | |
[5] | 江驹, 王新华, 甄子洋. 舰载机起飞着舰引导与控制[M]. 北京: 科学出版社, 2019. |
JIANG Ju, WANG Xinhua, ZHEN Ziyang. Guidance and control of carrier-based aircraft taking off and landing[M]. Beijing: Science Press, 2019. | |
[6] | 薛均晓, 孔祥燕, 郭毅博, 等. 基于深度强化学习的舰载机动态避障方法[J]. 计算机辅助设计与图形学学报, 2021, 33(7): 1102-1112. |
XUE Junxiao, KONG Xiangyan, GUO Yibo, et al. Dynamic obstacle avoidance method for carrier aircraft based on deep reinforcement learning[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(7): 1102-1112. | |
[7] | 汪丁, 黄葵, 朱兴动, 等. 基于改进YOLOv4-tiny的舰面多目标检测算法[J]. 兵工自动化, 2022, 41(10): 1-6. |
WANG Ding, HUANG Kui, ZHU Xingdong, et al. Multi-target detection algorithm for ship surface based on improved YOLOv4-tiny[J]. Ordnance Industry Automation, 2022, 41(10): 1-6. | |
[8] |
范加利, 田少兵, 黄葵, 等. 基于Faster R-CNN的航母舰面多尺度目标检测算法[J]. 系统工程与电子技术, 2022, 44(1): 40-46.
doi: 10.12305/j.issn.1001-506X.2022.01.06 |
FAN Jiali, TIAN Shaobing, HUANG Kui, et al. Multi-scale object detection algorithm for aircraft carrier surface based on Faster R-CNN[J]. Systems Engineering and Electronics, 2022, 44(1): 40-46.
doi: 10.12305/j.issn.1001-506X.2022.01.06 |
|
[9] |
朱兴动, 汪丁, 范加利, 等. 复杂场景下基于增强YOLOv3的舰面多目标检测[J]. 计算机工程与应用, 2022, 58(13): 177-184.
doi: 10.3778/j.issn.1002-8331.2012-0411 |
ZHU Xingdong, WANG Ding, FAN Jiali, et al. Multitarget detection based on enhanced YOLOv3 in complex scenarios[J]. Computer Engineering and Applications, 2022, 58(13): 177-184.
doi: 10.3778/j.issn.1002-8331.2012-0411 |
|
[10] | XU P C, GUO Z Y, LIANG L, et al. MSF-net: Multi-scale feature learning network for classification of surface defects of multifarious sizes[J]. Sensors, 2021, 21(15): 5125. |
[11] | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 936-944. |
[12] | ZHANG S F, CHI C, YAO Y Q, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE, 2020: 9756-9765. |
[13] | GUO D Z, ZHU L G, LU Y H, et al. Small object sensitive segmentation of urban street scene with spatial adjacency between object classes[J]. IEEE Transactions on Image Processing, 2018: 28(6): 2643-2653. |
[14] |
谢磊, 丁达理, 魏政磊, 等. AdaBoost-PSO-LSTM网络实时预测机动轨迹[J]. 系统工程与电子技术, 2021, 43(6): 1651-1658.
doi: 10.12305/j.issn.1001-506X.2021.06.23 |
XIE Lei, DING Dali, WEI Zhenglei, et al. Real time prediction of maneuver trajectory for AdaBoost-PSO-LSTM network[J]. Systems Engineering and Electronics, 2021, 43(6): 1651-1658.
doi: 10.12305/j.issn.1001-506X.2021.06.23 |
|
[15] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[M]//Computer Vision-ECCV 2016. Cham: Springer, 2016: 21-37. |
[16] | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// 2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 2999-3007. |
[17] | REDMON J, FARHADI A. YOLOv3: An incremental improvement[DB/OL]. (2018-04-08)[2022-06-09]. https://arxiv.org/abs/1804.02767.pdf. |
[18] | FU C Y, LIU W, RANGA A, et al. DSSD: Deconvolutional single shot detector[DB/OL]. (2017-01-23)[2022-07-10]. https://arxiv.org/abs/1701.06659.pdf. |
[1] | 徐旺旺1,2,许良凤1,2,刘宁徽3,律娜3. 基于多注意力卷积神经网络的乳腺癌组织学图像诊断[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 91-106. |
[2] | 丁黎辉1, 2, 付立军1, 3, 杨光4, 5, 6, 万林4, 5, 常志军7. 基于视频的婴儿癫痫性痉挛综合征检测:建模、检测与评估[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 1-9. |
[3] | 周成, 蒋祖华. 融入优质主题和注意力机制的设计规范命名实体识别方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1169-1180. |
[4] | 彭诗玮1, 张希1, 朱旺旺1, 窦瑞2. 融合乘客感受量化指标的智能汽车舒适性研究[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1063-1070. |
[5] | 李利娟, 刘海, 刘红良, 张青松, 陈永东. 融合外部注意力机制的序列到点非侵入式负荷分解[J]. 上海交通大学学报, 2024, 58(6): 846-854. |
[6] | 李翠明, 王华, 徐龙儿, 王龙. 基于改进DeepLabv3+的光伏电站道路识别方法[J]. 上海交通大学学报, 2024, 58(5): 776-782. |
[7] | 鄢丛强1,2, 郭正玉3,4, 蔡云泽 1,2. 基于改进CycleGAN的SAR图像舰船尾迹数据增强[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 702-711. |
[8] | 黄权印, 蔡益朝, 李浩, 唐晓, 王辰洋. 基于改进注意力机制的自适应航迹预测方法[J]. 空天防御, 2024, 7(3): 94-101. |
[9] | 顾星海,花 豹,刘亚辉,孙学民,鲍劲松. 面向装配工艺文档的装配语义实体识别与关系构建方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 537-556. |
[10] | 张彦军1,4,5,6,7, 王碧云2,3 , 蔡云泽1,4,5,6,7. 基于注意力的多通道网络红外弱小目标检测[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 414-427. |
[11] | 陈坤1, 2, 赵旭1, 董春玉1, 邸子超1, 陈宗枝1. 基于滤波器预测的抗遮挡目标跟踪算法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 400-413. |
[12] | 陈昊蓝, 靳冰莹, 刘亚东, 钱庆林, 王鹏, 陈艳霞, 于希娟, 严英杰. 基于门控循环注意力网络的配电网故障识别方法[J]. 上海交通大学学报, 2024, 58(3): 295-303. |
[13] | 于生,李向舜. 识别稳态与瞬态[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 261-270. |
[14] | 章涛, 张雪瑞, 陈勇, 钟科林, 罗其俊. 面向民机可视导航的场面多尺度目标检测[J]. 上海交通大学学报, 2024, 58(11): 1816-1825. |
[15] | 曾志贤,曹建军,翁年凤,袁震,余旭. 基于细粒度联合注意力机制的图像-文本跨模态实体分辨[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 728-737. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 21
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 61
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||