J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (5): 1065-1072.doi: 10.1007/s12204-023-2675-y
• • 上一篇
收稿日期:
2023-03-08
接受日期:
2023-05-10
出版日期:
2025-09-26
发布日期:
2023-12-01
杨壮1,李兆飞1, 2 ,王继华1,魏旭东1,张逸杰1
Received:
2023-03-08
Accepted:
2023-05-10
Online:
2025-09-26
Published:
2023-12-01
摘要: 中国诗酒文化中文命名实体识别任务是构建该领域知识图谱与问答系统的关键步骤;针对中国诗酒文化实体长短不一,以及现阶段命名实体识别模型训练成本高的特点,本研究提出一种轻量级BERT-双向长短期记忆网络-注意力机制-条件随机场(ALBERT-BILSTM-Att-CRF)的中国诗酒文化深度识别方法。该方法首先通过ALBERT模块获得字符级别的语义信息,然后由BILSTM模块抽取其高维特征,由Attention层对原始词向量和学习后的文本向量进行加权,最后在CRF模块预测出真实的标签(包括:诗词题目,作者,时间,体裁和类型五类)序列。通过对中国诗酒文化相关数据集进行实验,结果表明:该方法的效果高于现有的主流模型,可以高效提取中国诗酒文化中的重要实体信息,是一种针对长短不一诗歌类命名实体识别的有效方法。
中图分类号:
. 基于ALBERT的中国诗酒文化命名实体识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1065-1072.
YANG Zhuang, LI Zhaofei, WANG Jihua, WEI Xudong, ZHANG Yijie. Named Entity Identification of Chinese Poetry and Wine Culture Based on ALBERT[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1065-1072.
[1] LI J, SUN A X, HAN J L, et al. A survey on deep learning for named entity recognition [J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(1): 50-70. [2] LIN Q K, MAO R, LIU J, et al. Fusing topology contexts and logical rules in language models for knowledge graph completion [J]. Information Fusion, 2023, 90: 253-264. [3] CHEN H, HONG P F, HAN W, et al. Dialogue relation extraction with document-level heterogeneous graph attention networks [J]. Cognitive Computation, 2023, 15(2): 793-802. [4] ZHANG D Q, YAO Y Z, LI J, et al. Synchronous condenser-based intelligent question answering system based on knowledge graph[M]//Proceedings of the world conference on intelligent and 3-D technologies (WCI3DT 2022). Singapore: Springer, 2023: 521-529. [5] AONE C, HALVERSON L, HAMPTON T, et al. SRA: Description of the IE2 system used for MUC-7[C]//Seventh Message Understanding Conference. Fairfax: SRA: 1998. [6] ETZIONI O, CAFARELLA M, DOWNEY D, et al. Unsupervised named-entity extraction from the Web: An experimental study [J]. Artificial Intelligence, 2005, 165(1): 91-134. [7] HAN X, KWOH C K, KIM J J. Clustering based active learning for biomedical Named Entity Recognition [C]//2016 International Joint Conference on Neural Networks. Vancouver: IEEE, 2016: 1253-1260. [8] WANG Z R, DU J, WANG J M. Writer-aware CNN for parsimonious HMM-based offline handwritten Chinese text recognition [J]. Pattern Recognition, 2020, 100: 107102. [9] ALOKAILI A, EL BACHIR MENAI M. SVM ensembles for named entity disambiguation [J]. Computing, 2020, 102(4): 1051-1076. [10] LIU S, HE T H, DAI J H. A survey of CRF algorithm based knowledge extraction of elementary mathematics in Chinese [J]. Mobile Networks and Applications, 2021, 26(5): 1891-1903. [11] HUANG Z H, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging [DB/OL]. (2015-08-09). https://arxiv.org/abs/1508.01991 [12] STRUBELL E, VERGA P, BELANGER D, et al. Fast and accurate entity recognition with iterated dilated convolutions [DB/OL]. (2017-02-07). https://arxiv.org/abs/1702.02098 [13] ULČAR M, ROBNIK-ŠIKONJA M. Cross-lingual alignments of ELMo contextual embeddings [J]. Neural Computing and Applications, 2022, 34(15): 13043-13061. [14] SAVELKA J, AGARWAL A, BOGART C, et al. Large language models (GPT) struggle to answer multiple-choice questions about code [DB/OL]. (2023-03-09). https://arxiv.org/abs/2303.08033 [15] KUMAR P, RAMAN B. A BERT based dual-channel explainable text emotion recognition system [J]. Neural Networks, 2022, 150: 392-407. [16] LAN Z Z, CHEN M D, GOODMAN S, et al. ALBERT: A lite BERT for self-supervised learning of language representations [DB/OL]. (2019-09-26). https://arxiv.org/abs/1909.11942 [17] AN Y, XIA X Y, CHEN X L, et al. Chinese clinical named entity recognition via multi-head self-attention based BiLSTM-CRF [J]. Artificial Intelligence in Medicine, 2022, 127: 102282. |
[1] | . 面向太阳能电池复杂缺陷检测的新型多步深度学习方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1050-1064. |
[2] | . 基于CEEMDAN 和 GRU的停车位预测[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 962-975. |
[3] | 梁煜婉, 肖朝昀, 李明广, 孟江山, 周建烽, 黄山景, 朱浩杰. 基于长短时记忆的真空预压地基沉降预测[J]. 上海交通大学学报, 2025, 59(4): 525-532. |
[4] | 赵紫昱, 王绪泉, 马杰, 邢裕杰, 顿雄, 王占山, 程鑫彬. 轻薄红外计算成像重建算法的边缘芯片部署方法研究[J]. 空天防御, 2025, 8(4): 85-93. |
[5] | . 基于RGB-D图像的机器人抓取检测高效全卷积网络和优化方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 399-416. |
[6] | . 基于双流自编码器的无监督动作识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 330-336. |
[7] | Sahaya Anselin Nisha1, NARMADHA R.1, AMIRTHALAKSHMI T. M.2, BALAMURUGAN V.1, VEDANARAYANAN V.1. LOBO优化的深度卷积神经网络用于脑肿瘤分类[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 107-114. |
[8] | 徐旺旺1,2,许良凤1,2,刘宁徽3,律娜3. 基于多注意力卷积神经网络的乳腺癌组织学图像诊断[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 91-106. |
[9] | 孙佳哲, 邹鹰. 基于深度学习的码头电子围栏识别应用[J]. 海洋工程装备与技术, 2025, 12(1): 87-93. |
[10] | 王于波, 郝玲, 徐飞, 陈文彬, 郑利斌, 陈磊, 闵勇. 分布式光伏集群发电功率波动模式识别与超短期概率预测[J]. 上海交通大学学报, 2024, 58(9): 1334-1343. |
[11] | 李明爱1, 2, 魏丽娜1. 基于朴素卷积神经网络和线性插值的运动想像分类[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 958-966. |
[12] | 周成, 蒋祖华. 融入优质主题和注意力机制的设计规范命名实体识别方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1169-1180. |
[13] | 崔闪, 潘俊杨, 王伟, 郭叶, 许江涛. 基于深度学习的防空反导拦截决策研究[J]. 空天防御, 2024, 7(5): 54-64. |
[14] | 刘婧, 郭晓雷, 张欣海, 毛靖军, 吕瑞恒. 空面导弹轻量化空中斜框目标检测算法[J]. 空天防御, 2024, 7(4): 106-113. |
[15] | 顾星海,花 豹,刘亚辉,孙学民,鲍劲松. 面向装配工艺文档的装配语义实体识别与关系构建方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 537-556. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||