J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (6): 958-966.doi: 10.1007/s12204-022-2486-6
李明爱1,2,魏丽娜1
接受日期:
2021-09-07
出版日期:
2024-11-28
发布日期:
2024-11-28
LI Mingai1,2∗ (李明爱), WEI Lina1 (魏丽娜)
Accepted:
2021-09-07
Online:
2024-11-28
Published:
2024-11-28
摘要: 深度学习已应用于脑机接口系统中的运动想像脑电分类,以帮助患有严重运动神经障碍的人们。低效网络和数据短缺是研究者所面临和需要解决的主要问题。提出了一种新的运动想像脑电分类方法。设计一种含有两个卷积层的朴素卷积神经网络,以提取运动想像脑电信号的时空特征,并引入一种基于线性插值的数据增广方法,随机选择两个无重复的试验即可产生一个新数据。基于两个公共脑机接口竞赛数据集进行实验研究,确定了朴素卷积神经网络的结构,并优化了该网络及数据增广方法的参数;取得90.27%和98.23%的平均分类准确率,且平均卡帕值分别为0.85和0.965。实验结果表明:所提分类方法相对现有方法在识别精度和统计一致性方面均具有优势。
中图分类号:
李明爱1, 2, 魏丽娜1. 基于朴素卷积神经网络和线性插值的运动想像分类[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 958-966.
LI Mingai1, 2∗ (李明爱), WEI Lina1 (魏丽娜). Motor Imagery Classification Based on Plain Convolutional Neural Network and Linear Interpolation[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 958-966.
[1] DAI M X, ZHENG D Z, NA R, et al. EEG classification of motor imagery using a novel deep learning framework [J]. Sensors, 2019, 19(3): 551. [2] JOHNSON N N, CAREY J, EDELMAN B J, et al. Combined rTMS and virtual reality brain-computer interface training for motor recovery after stroke [J]. Journal of Neural Engineering, 2018, 15(1): 016009. [3] TANG X L, LI W, LI X C, et al. Motor imagery EEG recognition based on conditional optimization empirical mode decomposition and multi-scale convolutional neural network [J]. Expert Systems with Applications, 2020, 149: 113285. [4] ZHANG D L, YAO L N, CHEN K X, et al. Making sense of spatio-temporal preserving representations for EEG-based human intention recognition [J]. IEEE Transactions on Cybernetics, 2020, 50(7): 3033-3044. [5] ZHAO X Q, ZHANG H M, ZHU G L, et al. A multibranch 3D convolutional neural network for EEGbased motor imagery classification [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(10): 2164-2177. [6] DAI G H, ZHOU J, HUANG J H, et al. HS-CNN: a CNN with hybrid convolution scale for EEG motor imagery classification [J]. Journal of Neural Engineering,m 2020, 17(1): 016025. [7] COLLAZOS-HUERTAS D F, ALVAREZ-MEZA A M,ACOSTA-MEDINA C D, et al. CNN-based framework using spatial dropping for enhanced interpretation of neural activity in motor imagery classification [J]. Brain Informatics, 2020, 7(1): 8. [8] TANG X B, ZHAO J C, FU W L, et al. A novel classification algorithm for MI-EEG based on deep learning [C]//2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference. Chongqing, China: IEEE, 2019: 606-611. [9] GUBERT P H, COSTA M H, SILVA C D, et al. The performance impact of data augmentation in CSPbased motor-imagery systems for BCI applications [J]. Biomedical Signal Processing and Control, 2020, 62: 102152. [10] LUO T J, ZHOU C L, CHAO F. Exploring spatialfrequency-sequential relationships for motor imagery classification with recurrent neural network [J]. BMC Bioinformatics, 2018, 19(1): 344. [11] HARTMANN K G, SCHIRRMEISTER R T, BALL T. EEG-GAN: Generative adversarial networks for electroencephalograhic (EEG) brain signals [DB/OL]. (2018-06-05). https://arxiv.org/abs/1806.01875. [12] SCHIRRMEISTER R T, SPRINGENBERG J T, FIEDERER L D J, et al. Deep learning with convolutional neural networks for EEG decoding and visualization [J]. Human Brain Mapping, 2017, 38(11):m 5391-5420. [13] BCI Competition IV [EB/OL]. [2021-06-07]. https://www.bbci.de/competition/iv/. [14] JIANG A M, SHANG J, LIU X F, et al. Efficient CSP algorithm with spatio-temporal filtering for motor imagery classification [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(4): 1006-1016. [15] LI Z, YU Y. Improving EEG-based motor imagery classification with conditional Wasserstein GAN [C]//Proceedings of SPIE, 2020, 11584: 115841U. [16] ZHENG Q Q, ZHU F Y, HENG P A. Robust support matrix machine for single trial EEG classification [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(3): 551-562. |
[1] | 王于波, 郝玲, 徐飞, 陈文彬, 郑利斌, 陈磊, 闵勇. 分布式光伏集群发电功率波动模式识别与超短期概率预测[J]. 上海交通大学学报, 2024, 58(9): 1334-1343. |
[2] | 蒋伊琳1, 2, 李向1, 2, 张昊平3. 基于卷积神经网络和接收信号强度的波束状态感知方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1017-1022. |
[3] | 柯晶1, 朱俊超2, 杨鑫1, 张浩林3, 孙宇翔1, 王嘉怡1, 鲁亦舟4, 沈逸卿5, 刘晟6, 蒋伏松7, 黄琴8. TshFNA-Examiner:甲状腺细胞学图像的核分割和癌症评估框架[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 945-957. |
[4] | 崔闪, 潘俊杨, 王伟, 郭叶, 许江涛. 基于深度学习的防空反导拦截决策研究[J]. 空天防御, 2024, 7(5): 54-64. |
[5] | 刘婧, 郭晓雷, 张欣海, 毛靖军, 吕瑞恒. 空面导弹轻量化空中斜框目标检测算法[J]. 空天防御, 2024, 7(4): 106-113. |
[6] | 张静克1,何新林2,戚宗锋1,马 超2,李建勋2. 不平衡图多尺度融合节点分类方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 557-565. |
[7] | 张彦军1,4,5,6,7, 王碧云2,3 , 蔡云泽1,4,5,6,7. 基于注意力的多通道网络红外弱小目标检测[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 414-427. |
[8] | 程相伟, 张大旭, 杜永龙, 郭洪宝, 洪智亮. 基于X射线CT原位试验的平纹SiCf/SiC压缩损伤演化机理[J]. 上海交通大学学报, 2024, 58(2): 232-241. |
[9] | 何文, 高斌, 王强强, 冯少孔, 叶冠林. 基于高斯混合聚类的综合物探方法及其在岩溶勘探中的应用[J]. 上海交通大学学报, 2024, 58(11): 1724-1734. |
[10] | 陆文安, 朱清晓, 李兆伟, 刘辉, 余一平. 基于卷积神经网络的新型电力系统频率特性预测方法[J]. 上海交通大学学报, 2024, 58(10): 1500-1512. |
[11] | 李明爱1,2,3,许冬芹1. 综述:运动想像脑机接口中的迁移学习[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 37-59. |
[12] | 张春雁, 窦真兰, 白冰青, 王玲玲, 蒋传文, 熊展. 基于用户分类的综合能源系统低碳运行策略[J]. 上海交通大学学报, 2024, 58(1): 1-10. |
[13] | 林照晨, 张欣然, 刘紫阳, 贺风华, 欧阳磊. 基于深度学习的高超声速飞行器运动行为识别[J]. 空天防御, 2024, 7(1): 48-55. |
[14] | 沈傲1, 2,胡冀苏2, 3,金鹏飞4,周志勇2,钱旭升2, 3,郑毅2,包婕4,王希明4,戴亚康1, 2. 基于课程学习训练的聚合注意力网络Multi-SEANet用于MRI图像的格里森级别组无创预测[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 109-119. |
[15] | 詹可, 朱仁传. 一种CNN-LSTM船舶运动极值预报模型[J]. 上海交通大学学报, 2023, 57(8): 963-971. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||