[1] ZHUANG F Z, LUO P, HE Q, et al. Survey on transfer learning research [J]. Journal of Software, 2015, 26(1): 26-39 (in Chinese).
[2] NICOLAS-ALONSO L F, GOMEZ-GIL J. Brain computer interfaces, a review [J]. Sensors, 2012, 12(2): 1211-1279.
[3] LOTTE F, BOUGRAIN L, CICHOCKI A, et al. A review of classification algorithms for EEG-based braincomputer interfaces: A 10 year update [J]. Journal of Neural Engineering, 2018, 15(3): 031005.
[4] PAN S J, YANG Q. A survey on transfer learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.
[5] WEISS K, KHOSHGOFTAAR T M, WANG D D. A survey of transfer learning [J]. Journal of Big Data, 2016, 3: 9.
[6] DAY O, KHOSHGOFTAAR T M. A survey on heterogeneous transfer learning [J]. Journal of Big Data, 2017, 4: 29.
[7] ARGYRIOU A, MAURER A, PONTIL M. An algorithm for transfer learning in a heterogeneous environment [M]//Machine learning and knowledge discovery in databases. Berlin, Heidelberg: Springer, 2008: 71-85.
[8] YIN J, YANG Q, NI L. Adaptive temporal radio maps for indoor location estimation [C]//Third IEEE International Conference on Pervasive Computing and Communications. Kauai, HI: IEEE, 2005: 85-94.
[9] ZHANG L N, ZUO X, LIU J W. Research and development on zero-shot learning [J]. Acta Automatica Sinica, 2020, 46(1): 1-23 (in Chinese).
[10] TAYLOR M E, STONE P. An introduction to intertask transfer for reinforcement learning [J]. AI Magazine, 2011, 32(1): 15.
[11] TAYLOR M E, STONE P. Transfer learning for reinforcement learning domains: A survey [J]. Journal of Machine Learning Research, 2009, 10(10): 1633-1685.
[12] SU L J, YAO M, ZHENG N G, et al. Correlation between extreme learning machine and entorhinal hippocampal system [C]//Proceedings of ELM-2015 Volume 2. Cham: Springer, 2016: 307-315.
[13] WU Z H, ZHENG N G, ZHANG S W, et al. Maze learning by a hybrid brain-computer system [J]. Scientific Reports, 2016, 6: 31746.
[14] KONG X Y, GONG S, SU L J, et al. Neuroprotective effects of allicin on ischemia-reperfusion brain injury [J]. Oncotarget, 2017, 8(61): 104492-104507.
[15] TAN C Q, SUN F C, KONG T, et al. Attentionbased transfer learning for brain-computer interface [C]//2019 IEEE International Conference on Acoustics, Speech and Signal Processing. Brighton: IEEE, 2019: 1154-1158.
[16] PAVONE K J, SU L J, GAO L, et al. Lack of responsiveness during the onset and offset of sevoflurane anesthesia is associated with decreased awake-alpha oscillation power [J]. Frontiers in Systems Neuroscience, 2017, 11: 38.
[17] JAYARAM V, ALAMGIR M, ALTUN Y, et al. Transfer learning in brain-computer interfaces [J]. IEEE Computational Intelligence Magazine, 2016, 11(1): 20-31.
[18] GU X T, CAO Z H, JOLFAEI A, et al. EEG-based brain-computer interfaces (BCIs): A survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18(5): 1645-1666.
[19] HOSSAIN I, KHOSRAVI A, HETTIARACHCHI I, et al. Multiclass informative instance transfer learning framework for motor imagery-based brain-computer interface [J]. Computational Intelligence and Neuroscience, 2018, 2018: 6323414.
[20] WU H, NIU Y, LI F, et al. A parallel multiscale filter bank convolutional neural networks for motor imagery EEG classification [J]. Frontiers in Neuroscience, 2019, 13: 1275.
[21] AZAB A M, MIHAYLOVA L, ANG K K, et al. Weighted transfer learning for improving motor imagery-based brain-computer interface [J]. IEEETransactions on Neural Systems and Rehabilitation
Engineering, 2019, 27(7): 1352-1359.
[22] ARVANEH M, GUAN C T, ANG K K, et al. EEG data space adaptation to reduce intersession nonstationarity in brain-computer interface [J]. Neural Computation, 2013, 25(8): 2146-2171.
[23] RODRIGUES P L C, CONGEDO M, JUTTEN C. Dimensionality transcending: A method for merging BCI datasets with different dimensionalities [J]. IEEE Transactions on Biomedical Engineering, 2021, 68(2): 673-684.
[24] ZHENG M M, YANG B H, XIE Y L. EEG classification across Sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system [J]. Medical & Biological Engineering & Computing, 2020, 58(7): 1515-1528.
[25] HUANG Z H, ZHENG W M, WU Y J, et al. Ensemble or pool: A comprehensive study on transfer learning for c-VEP BCI during interpersonal interaction [J]. Journal of Neuroscience Methods, 2020, 343: 108855.
[26] SAHA S, BAUMERT M. Intra- and inter-subject variability in EEG-based sensorimotor brain computer interface: A review [J]. Frontiers in Computational Neuroscience, 2020, 13: 87.
[27] XU L C, XU M P, KE Y F, et al. Cross-dataset variability problem in EEG decoding with deep learning [J]. Frontiers in Human Neuroscience, 2020, 14: 103.
[28] ROY S, CHOWDHURY A, MCCREADIE K, et al. Deep learning based inter-subject continuous decoding of motor imagery for practical brain-computer interfaces [J]. Frontiers in Neuroscience, 2020, 14: 918.
[29] ZHANG K, XU G H, CHEN L, et al. Instance transfer subject-dependent strategy for motor imagery signal classification using deep convolutional neural networks [J]. Computational and Mathematical Methods in Medicine, 2020, 2020: 1683013.
[30] PARVAN M, GHIASI A R, REZAII T Y, et al. Transfer Learning based Motor Imagery Classification using Convolutional Neural Networks [C]//2019 27th Iranian Conference on Electrical Engineering (ICEE). Yazd: IEEE, 2019: 1825-1828.
[31] KSHIRSAGAR G B, LONDHE N D. Weighted ensemble of deep convolution neural networks for single-trial character detection in Devanagari-script-based P300 speller [J]. IEEE Transactions on Cognitive and Developmental Systems, 2020, 12(3): 551-560.
[32] KOSTAS D, RUDZICZ F. Thinker invariance: Enabling deep neural networks for BCI across more people [J]. Journal of Neural Engineering, 2020, 17(5): 056008.
[33] KANT P, LASKAR S H, HAZARIKA J, et al. CWT based transfer learning for motor imagery classification for brain computer interfaces [J]. Journal of Neuroscience Methods, 2020, 345: 108886.
[34] WANG Y, ZHANG M, WU R M, et al. Silent Speech Decoding Using Spectrogram Features Based on Neuromuscular Activities [J]. Brain Sciences, 2020, 10(7): 442.
[35] THRUN S, PRATT L. Learning to learn: Introduction and overview [M]//Learning to learn. Boston: Springer, 1998: 3-17.
[36] LI Y, KAMBARA H, KOIKE Y, et al. Application of covariate shift adaptation techniques in brain-computer interfaces [J]. IEEE Transactions on Biomedical Engineering, 2010, 57(6): 1318-1324.
[37] LI Y, KOIKE Y, SUGIYAMA M. A framework of adaptive brain computer interfaces [C]//2009 2nd International Conference on Biomedical Engineering and Informatics. Tianjin: IEEE, 2009: 1-5.
[38] WU D R, LANCE B J, PARSONS T D. Collaborative filtering for brain-computer interaction using transfer learning and active class selection [J]. PLoS ONE, 2013, 8(2): e56624.
[39] HOSSAIN I, KHOSRAVI A, NAHAVANDHI S. Active transfer learning and selective instance transfer with active learning for motor imagery based BCI [C]//2016 International Joint Conference on Neural Networks. Vancouver, BC: IEEE, 2016: 4048-4055.
[40] HOSSAIN I, KHOSRAVI A, HETTIARACHCHI I T, et al. Informative instance transfer learning with subject specific frequency responses for motor imagery brain computer interface [C]//2017 IEEE International Conference on Systems, Man, and Cybernetics. Banff, AB: IEEE, 2017: 252-257.
[41] WU D R. Active semi-supervised transfer learning (ASTL) for offline BCI calibration [C]//2017 IEEE International Conference on Systems, Man, and Cybernetics. Banff, AB: IEEE, 2017: 246-251.
[42] VERHOEVEN T, VUYLSTEKER B, DAMBRE J. Model selection for subject-to-subject transfer learning in brain-computer interfaces [EB/OL]. [2021-03-29]. https://www.researchgate.net/publication 318788804 Model Selection for Subject-to-Subject Transfer Learning in Brain-Computer Interfaces.
[43] WEI C S, LIN Y P, WANG Y T, et al. Transfer learning with large-scale data in brain-computer interfaces [C]//2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Orlando, FL: IEEE, 2016: 4666-4669.
[44] FAUZI H, SHAPIAI M I, KHAIRUDDIN U. Transfer learning of BCI using CUR algorithm [J]. Journal of Signal Processing Systems, 2020, 92(1): 109-121.
[45] ADAIR J, BROWNLEE A, DAOLIO F, et al. Evolving training sets for improved transfer learning in brain computer interfaces [M]//Machine learning, optimization, and big data. Cham: Springer, 2018: 186-197.
[46] DAGOIS E, KHALAF A, SEJDIC E, et al. Transfer learning for a multimodal hybrid EEG-fTCD braincomputer interface [J]. IEEE Sensors Letters, 2019, 3(1): 7100704.
[47] KHALAF A, AKCAKAYA M. A probabilistic approach for calibration time reduction in hybrid EEGfTCD brain-computer interfaces [J]. Biomedical Engineering Online, 2020, 19(1): 23.
[48] SYBELDON M, SCHMIT L, AKCAKAYA M. Transfer learning for SSVEP electroencephalography based brain–computer interfaces using Learn++.NSE and mutual information [J]. Entropy, 2017, 19(1): 41.
[49] NAKANISHI M, WANG Y T, WEI C S, et al. Facilitating calibration in high-speed BCI spellers via leveraging cross-device shared latent responses [J]. IEEE Transactions on Biomedical Engineering, 2020, 67(4): 1105-1113.
[50] BAMDADIAN A, GUAN C T, ANG K K, et al. Improving session-to-session transfer performance of motor imagery-based BCI using Adaptive Extreme Learning Machine [C]//2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Osaka: IEEE, 2013: 2188-2191.
[51] VIDAURRE C, KAWANABE M, VON B¨UNAU P, et al. Toward unsupervised adaptation of LDA for brain-computer interfaces [J]. IEEE Transactions on Biomedical Engineering, 2011, 58(3): 587-597.
[52] SP¨ULER M, ROSENSTIEL W, BOGDAN M. Adaptive SVM-based classification increases performance of a MEG-based brain-computer interface (BCI) [M]//Artificial neural networks and machine learning - ICANN 2012. Berlin, Heidelberg: Springer, 2012: 669- 676.
[53] BRUZZONE L, MARCONCINI M. Domain adaptation problems: A DASVM classification technique and a circular validation strategy [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 770-787.
[54] TU W T, SUN S L. A subject transfer framework for EEG classification [J]. Neurocomputing, 2012, 82: 109-116.
[55] DALHOUMI S, DRAY G, MONTMAIN J, et al. An adaptive accuracy-weighted ensemble for intersubjects classification in brain-computer interfacing [C]//7th International IEEE EMBS Neural Engineering Conference. Montpellier: IEEE, 2015: 126-129.
[56] SALAMI A, KHODABAKHSHI M B, MORADI M H. Fuzzy transfer learning approach for analysing imagery BCI tasks [C]//2017 Artificial Intelligence and Signal Processing Conference. Shiraz: IEEE, 2017: 300-305.
[57] XU G W, SHEN X A, CHEN S R, et al. A deep transfer convolutional neural network framework for EEG signal classification [J]. IEEE Access, 2019, 7: 112767- 112776.
[58] HAJINOROOZI M, MAO Z J, LIN Y P, et al. Deep transfer learning for cross-subject and crossexperiment prediction of image rapid serial visual presentation events from EEG data [M]/ Augmented cognition neurocognition and machine learning. Cham: Springer, 2017: 45-55.
[59] ZHAO D Y, TANG F Z, SI B L, et al. Learning joint space-time-frequency features for EEG decoding on small labeled data [J]. Neural Networks, 2019, 114: 67-77.
[60] FARAHAT A, REICHERT C, SWEENEY-REED C M, et al. Convolutional neural networks for decoding of covert attention focus and saliency maps for EEG feature visualization [J]. Journal of Neural Engineering, 2019, 16(6): 066010.
[61] FAHIMI F, ZHANG Z, GOH W B, et al. Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI [J]. Journal of Neural Engineering, 2019, 16(2): 026007.
[62] ¨OZDENIZCI O, WANG Y, KOIKE-AKINO T, et al. Transfer learning in brain-computer interfaces with adversarial variational autoencoders [C]//2019 9th International IEEE/EMBS Conference on Neural Engineering. San Francisco, CA: IEEE, 2019: 207-210.
[63] TU W T, SUN S L. Transferable discriminative dimensionality reduction [C]//2011 IEEE 23rd International Conference on Tools with Artificial Intelligence. Boca Raton, FL: IEEE, 2011: 865-868.
[64] LEE H, CHOI S. Group nonnegative matrix factorization for EEG classification [C]//12th International Conference on Artificial Intelligence and Statistics. Clearwater Beach, FL: PMLR, 2009: 320-327.
[65] SP¨ULER M, ROSENSTIEL W, BOGDAN M. Principal component based covariate shift adaption to reduce non-stationarity in a MEG-based brain-computer interface [J]. EURASIP Journal on Advances in Signal Processing, 2012, 2012: 129.
[66] WANG P T, LU J, LU C, et al. An algorithm for movement related potentials feature extraction based on transfer learning [C]//2015 5th International Conference on Information Science and Technology. Changsha: IEEE, 2015: 309-314.
[67] WAYTOWICH N R, LAWHERN V J, BOHANNON A W, et al. Spectral transfer learning using information geometry for a user-independent brain-computer interface [J]. Frontiers in Neuroscience, 2016, 10: 430.
[68] SAMEK W, MEINECKE F C, MULLER K R. Transferring subspaces between subjects in brain: Computer interfacing [J]. IEEE Transactions on Biomedical Engineering, 2013, 60(8): 2289-2298.
[69] KANG H, NAM Y, CHOI S. Composite common spatial pattern for subject-to-subject transfer [J]. IEEE Signal Processing Letters, 2009, 16(8): 683-686.
[70] LU H P, ENG H L, GUAN C T, et al. Regularized common spatial pattern with aggregation for EEG classifi- cation in small-sample setting [J]. IEEE Transactions on Biomedical Engineering, 2010, 57(12): 2936-2946.
[71] DEVLAMINCK D, WYNS B, GROSSE-WENTRUP M, et al. Multisubject learning for common spatial patterns in motor-imagery BCI [J]. Computational Intelligence and Neuroscience, 2011, 2011: 217987.
[72] ZHU X Y, LI P Y, LI C B, et al. Separated channel convolutional neural network to realize the training free motor imagery BCI systems [J]. Biomedical Signal Processing and Control, 2019, 49: 396-403.
[73] DAI M X, ZHENG D Z, LIU S C, et al. Transfer kernel common spatial patterns for motor imagery brain-computer interface classification [J]. Computational and Mathematical Methods in Medicine, 2018, 2018: 9871603.
[74] LONG M S, WANG J M, SUN J G, et al. Domain invariant transfer kernel learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(6): 1519-1532.
[75] ZANINI P, CONGEDO M, JUTTEN C, et al. Transfer learning: A Riemannian geometry framework with applications to brain-computer interfaces [J]. IEEE Transactions on Biomedical Engineering, 2018, 65(5): 1107-1116.
[76] JU C, GAO D S, MANE R, et al. Federated transfer learning for EEG signal classification [C]//2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Montreal, QC: IEEE, 2020: 3040-3045.
[77] RODRIGUES P L C, JUTTEN C, CONGEDO M. Riemannian Procrustes analysis: Transfer learning for brain-computer interfaces [J]. IEEE Transactions on Biomedical Engineering, 2019, 66(8): 2390-2401.
[78] GAUR P, MCCREADIE K, PACHORI R B, et al. Tangent space features-based transfer learning classification model for two-class motor imagery braincomputer interface [J]. International Journal of Neural Systems, 2019, 29(10): 1950025.
[79] ZHANG W, WU D R. Manifold embedded knowledge transfer for brain-computer interfaces [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(5): 1117-1127.
[80] MITROVIC N, ASIF M T, RASHEED U, et al. CUR decomposition for compression and compressed sensing of large-scale traffic data [C]//16th International IEEE Conference on Intelligent Transportation Systems. The Hague: IEEE, 2013: 1475-1480.
[81] WANG P T, LU J, ZHANG B, et al. A review on transfer learning for brain-computer interface classification [C]//2015 5th International Conference on Information Science and Technology. Changsha: IEEE, 2015: 315-322.
[82] LI G, LEE C H, JUNG J J, et al. Deep learning for EEG data analytics: A survey [J]. Concurrency and Computation: Practice and Experience, 2020, 32(18): e5199.
[83] YOSINSKI J, CLUNE J, BENGIO Y, et al. How transferable are features in deep neural networks? [M]//Advances in neural information processing systems 27 (NIPS 2014).Red Hook: Curran Associates, 2014: 1-9.
[84] V¨OLKER M, SCHIRRMEISTER R T, FIEDERER L D J, et al. Deep transfer learning for error decoding from non-invasive EEG [C]//2018 6th International Conference on Brain-Computer Interface. Gangwon: IEEE, 2018: 1-6.
[85] LI F, XIA Y, WANG F, et al. Transfer learning algorithm of P300-EEG signal based on XDAWN spatial filter and Riemannian geometry classifier [J]. Applied Sciences, 2020, 10(5): 1804.
[86] LEEB R, BRUNNER C, MULLER-PUTZ G R, et al. BCI Competition 2008: Graz data set B [EB/OL]. [2021-03-29]. https:// lampx.tugraz.at/~bci/ database/ 004-2014/ description.pdf.
[87] BRUNNER C, LEEB R, MULLER-PUTZ G R, et al. BCl Competition 2008: Graz data set A [EB/OL]. [2021-03-29]. https://www.bbci.de/competition/iv/desc 2a.pdf.
[88] BLANKERTZ B, DORNHEGE G, KRAULEDAT M, et al. The non-invasive Berlin Brain-Computer Interface: Fast acquisition of effective performance in untrained subjects [J]. NeuroImage, 2007, 37(2): 539-550.
[89] DORNHEGE G, BLANKERTZ B, CURIO G, et al. Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms [J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 993-1002.
[90] LEMM S, SCHAFER C, CURIO G. BCI competition 2003-data set III: Probabilistic modeling of sensorimotor/spl mu/rhythms for classification of imaginary hand movements [J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 1077-1080.
[91] LAL T N, HINTERBERGER T, WIDMAN G, et al. Methods towards invasive human brain computer interfaces [M]//Advances in neural information processing systems 17 (NIPS 2004). Red Hook: Curran Associates, 2004: 1-8.
[92] BLANKERTZ B, CURIO G, MULLER K. R. Classifying single trial EEG: Towards brain computer interfacing [M]//Advances in neural information processing systems 14 (NIPS 2001). Red Hook: Curran Associates, 2001: 1-8.
[93] ARVANEH M, GUAN C T, ANG K K, et al. Facilitating motor imagery-based brain-computer interface for stroke patients using passive movement [J]. Neural Computing & Applications, 2017, 28(11): 3259-3272.
[94] SCHALK G, MCFARLAND D J, HINTERBERGER T, et al. BCI2000: a general-purpose brain-computer interface (BCI) system [J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 1034-1043.
|