J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (5): 962-975.doi: 10.1007/s12204-023-2672-1
收稿日期:
2023-04-18
接受日期:
2023-06-19
出版日期:
2025-09-26
发布日期:
2023-12-01
马昌喜1,黄晓婷1,孟炜2
Received:
2023-04-18
Accepted:
2023-06-19
Online:
2025-09-26
Published:
2023-12-01
摘要: 剩余停车位的精准预测对于优化停车资源利用率、改善交通状况起着至关重要的作用。然而,以往的研究大多基于停车本身的历史数据或影响停车预测的众多因素进行模型建模,增加了数据的复杂性和运行模型所花费的时间,导致模型与极值点的拟合度较差。针对这一问题,提出一种基于完全自适应噪声集合经验模态分解(CEEMDAN)和门循环单元(GRU)模型的混合预测模型来预测停车剩余位数。在该模型中,CEEMDAN作为序列平滑分解模块,可以逐步分解不同尺度的时间序列波动或趋势,生成一系列具有不同特征尺度的本征模态函数(IMF)。然后,通过保留原始数据的大部分信息,主成分分析(PCA)减少了分解的IMF序列维度,消除了冗余信息,提高了预测响应速度。之后,高级抽象特征输入GRU网络,基于深度学习框架Keras完成网络的搭建、测试、预测。利用立体停车场采集的真实停车数据集验证了所提模型的有效性。实验结果表明,本文提出的模型在预测准确性方面优于基准模型,即更低的测试误差。CEEMDAN-PCA-GRU模型最接近真实的停车时间序列。因此,该方法在停车位预测方面比其他模型更有效。
中图分类号:
. 基于CEEMDAN 和 GRU的停车位预测[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 962-975.
MA Changxi, HUANG Xiaoting, MENG Wei. Predicting Parking Spaces Using CEEMDAN and GRU[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 962-975.
[1] AFRIN T, YODO N. A survey of road traffic congestion measures towards a sustainable and resilient transportation system [J]. Sustainability, 2020, 12(11): 4660. [2] KOUMETIO TEKOUABOU S C, ABDELLAOUI ALAOUI E A, CHERIF W, et al. Improving parking availability prediction in smart cities with IoT and ensemble-based model [J]. Journal of King Saud University - Computer and Information Sciences, 2022, 34(3): 687-697. [3] PARMAR J, DAS P, DAVE S M. Study on demand and characteristics of parking system in urban areas: A review [J]. Journal of Traffic and Transportation Engineering (English Edition), 2020, 7(1): 111-124. [4] CAICEDO F. The use of space availability information in “PARC” systems to reduce search times in parking facilities [J]. Transportation Research Part C: Emerging Technologies, 2009, 17(1): 56-68. [5] LIN T, RIVANO H, LE MOUËL F. A survey of smart parking solutions [J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(12): 3229-3253. [6] JI Y J, GAO L P, CHEN X S, et al. Strategies for multi-step-ahead available parking spaces forecasting based on wavelet transform [J]. Journal of Central South University, 2017, 24(6): 1503-1512. [7] ZENG C, MA C X, WANG K, et al. Predicting vacant parking space availability: A DWT-Bi-LSTM model [J]. Physica A: Statistical Mechanics and Its Applications, 2022, 599: 127498. [8] ABEDINIA O, LOTFI M, BAGHERI M, et al. Improved EMD-based complex prediction model for wind power forecasting [J]. IEEE Transactions on Sustainable Energy, 2020, 11(4): 2790-2802. [9] LI G X, ZHONG X. Parking demand forecasting based on improved complete ensemble empirical mode decomposition and GRU model [J]. Engineering Applications of Artificial Intelligence, 2023, 119: 105717. [10] HUANG Y A, YU J H, DAI X H, et al. Air-quality prediction based on the EMD–IPSO–LSTM combination model [J]. Sustainability, 2022, 14(9): 4889. [11] ZHANG Y A, YAN B B, AASMA M. A novel deep learning framework: Prediction and analysis of financial time series using CEEMD and LSTM [J]. Expert Systems With Applications, 2020, 159: 113609. [12] CHEN X Q, CHEN H X, YANG Y S, et al. Traffic flow prediction by an ensemble framework with data denoising and deep learning model [J]. Physica A: Statistical Mechanics and Its Applications, 2021, 565: 125574. [13] TANG J J, CHEN X Q, HU Z, et al. Traffic flow prediction based on combination of support vector machine and data denoising schemes [J]. Physica A: Statistical Mechanics and Its Applications, 2019, 534: 120642. [14] CHEN X Q, LU J Q, ZHAO J S, et al. Traffic flow prediction at varied time scales via ensemble empirical mode decomposition and artificial neural network [J]. Sustainability, 2020, 12(9): 3678. [15] CAO J, LI Z, LI J. Financial time series forecasting model based on CEEMDAN and LSTM [J]. Physica A: Statistical Mechanics and Its Applications, 2019, 519: 127-139. [16] ZHOU F T, HUANG Z H, ZHANG C H. Carbon price forecasting based on CEEMDAN and LSTM [J]. Applied Energy, 2022, 311: 118601. [17] WANG J, CAO J X, YUAN S, et al. Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network [J]. Energy, 2021, 233: 121082. [18] KUMAR S V, VANAJAKSHI L. Short-term traffic flow prediction using seasonal ARIMA model with limited input data [J]. European Transport Research Review, 2015, 7(3): 1-9. [19] OKUTANI I, STEPHANEDES Y J. Dynamic prediction of traffic volume through Kalman filtering theory [J]. Transportation Research Part B: Methodological, 1984, 18(1): 1-11. [20] RAJABIOUN T, IOANNOU P A. On-street and off-street parking availability prediction using multivariate spatiotemporal models [J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5): 2913-2924. [21] XIAO J, LOU Y Y, FRISBY J. How likely am I to find parking? A practical model-based framework for predicting parking availability [J]. Transportation Research Part B: Methodological, 2018, 112: 19-39. [22] AWAN F M, SALEEM Y, MINERVA R, et al. A comparative analysis of machine/deep learning models for parking space availability prediction [J]. Sensors, 2020, 20(1): 322. [23] MEI Z Y, ZHANG W, ZHANG L H, et al. Real-time multistep prediction of public parking spaces based on Fourier transform–least squares support vector regression [J]. Journal of Intelligent Transportation Systems, 2020, 24(1): 68-80. [24] INAM S, MAHMOOD A, KHATOON S, et al. Multisource data integration and comparative analysis of machine learning models for on-street parking prediction [J]. Sustainability, 2022, 14(12): 7317. [25] FAN J K, HU Q, TANG Z Z. Predicting vacant parking space availability: An SVR method with fruit fly optimisation [J]. IET Intelligent Transport Systems, 2018, 12(10): 1414-1420. [26] YE X F, WANG J F, WANG T, et al. Short-term prediction of available parking space based on machine learning approaches [J]. IEEE Access, 2020, 8: 174530-174541. [27] JELEN G, PODOBNIK V, BABIC J. Contextual prediction of parking spot availability: A step towards sustainable parking [J]. Journal of Cleaner Production, 2021, 312: 127684. [28] WU Y K, TAN H C. Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework [DB/OL]. (2016-12-03). https://arxiv.org/abs/1612.01022 [29] PICCIALLI F, GIAMPAOLO F, PREZIOSO E, et al. Predictive analytics for smart parking: A deep learning approach in forecasting of IoT data [J]. ACM Transactions on Internet Technology, 2021, 21(3): 1-21. [30] ZENG C, MA C X, WANG K, et al. Parking occupancy prediction method based on multi factors and stacked GRU-LSTM [J]. IEEE Access, 2022, 10: 47361-47370. [31] ZHANG W J, LIU H, LIU Y C, et al. Semi-supervised city-wide parking availability prediction via hierarchical recurrent graph neural network [J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(8): 3984-3996. [32] YANG S G, MA W, PI X D, et al. A deep learning approach to real-time parking occupancy prediction in transportation networks incorporating multiple spatio-temporal data sources [J]. Transportation Research Part C: Emerging Technologies, 2019, 107: 248-265. [33] FAN J K, HU Q, XU Y Y, et al. Predicting vacant parking space availability: A long short-term memory approach [J]. IEEE Intelligent Transportation Systems Magazine, 2022, 14(2): 129-143. [34] FENG Y J, XU Y Y, HU Q, et al. Predicting vacant parking space availability zone-wisely: A hybrid deep learning approach [J]. Complex & Intelligent Systems, 2022, 8(5): 4145-4161. [35] GAO L P, FAN W L, HU Z Y, et al. Prediction of vacant parking spaces in multiple parking lots: A DWT-ConvGRU-BRC model [J]. Applied Sciences, 2023, 13(6): 3791. [36] GROTH D, HARTMANN S, KLIE S, et al. Principal components analysis [M]// Computational toxicology. Totowa: Humana Press, 2013: 527-547. [37] LIU Z G, LI W J, FENG J X, et al. Research on satellite network traffic prediction based on improved GRU neural network [J]. Sensors, 2022, 22(22): 8678. |
[1] | . 基于ALBERT的中国诗酒文化命名实体识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1065-1072. |
[2] | . 面向太阳能电池复杂缺陷检测的新型多步深度学习方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1050-1064. |
[3] | 梁煜婉, 肖朝昀, 李明广, 孟江山, 周建烽, 黄山景, 朱浩杰. 基于长短时记忆的真空预压地基沉降预测[J]. 上海交通大学学报, 2025, 59(4): 525-532. |
[4] | 赵紫昱, 王绪泉, 马杰, 邢裕杰, 顿雄, 王占山, 程鑫彬. 轻薄红外计算成像重建算法的边缘芯片部署方法研究[J]. 空天防御, 2025, 8(4): 85-93. |
[5] | . 基于RGB-D图像的机器人抓取检测高效全卷积网络和优化方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 399-416. |
[6] | . 基于双流自编码器的无监督动作识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 330-336. |
[7] | 孙佳哲, 邹鹰. 基于深度学习的码头电子围栏识别应用[J]. 海洋工程装备与技术, 2025, 12(1): 87-93. |
[8] | Sahaya Anselin Nisha1, NARMADHA R.1, AMIRTHALAKSHMI T. M.2, BALAMURUGAN V.1, VEDANARAYANAN V.1. LOBO优化的深度卷积神经网络用于脑肿瘤分类[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 107-114. |
[9] | 徐旺旺1,2,许良凤1,2,刘宁徽3,律娜3. 基于多注意力卷积神经网络的乳腺癌组织学图像诊断[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 91-106. |
[10] | 王于波, 郝玲, 徐飞, 陈文彬, 郑利斌, 陈磊, 闵勇. 分布式光伏集群发电功率波动模式识别与超短期概率预测[J]. 上海交通大学学报, 2024, 58(9): 1334-1343. |
[11] | 李明爱1, 2, 魏丽娜1. 基于朴素卷积神经网络和线性插值的运动想像分类[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 958-966. |
[12] | 崔闪, 潘俊杨, 王伟, 郭叶, 许江涛. 基于深度学习的防空反导拦截决策研究[J]. 空天防御, 2024, 7(5): 54-64. |
[13] | 刘婧, 郭晓雷, 张欣海, 毛靖军, 吕瑞恒. 空面导弹轻量化空中斜框目标检测算法[J]. 空天防御, 2024, 7(4): 106-113. |
[14] | 张彦军1,4,5,6,7, 王碧云2,3 , 蔡云泽1,4,5,6,7. 基于注意力的多通道网络红外弱小目标检测[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 414-427. |
[15] | 程相伟, 张大旭, 杜永龙, 郭洪宝, 洪智亮. 基于X射线CT原位试验的平纹SiCf/SiC压缩损伤演化机理[J]. 上海交通大学学报, 2024, 58(2): 232-241. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||