J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (5): 962-975.doi: 10.1007/s12204-023-2672-1

• • 上一篇    下一篇

基于CEEMDAN 和 GRU的停车位预测

  

  1. 1. 兰州交通大学 交通运输学院,兰州730070;2. 甘肃陇原信息科技有限公司,兰州730030
  • 收稿日期:2023-04-18 接受日期:2023-06-19 出版日期:2025-09-26 发布日期:2023-12-01

Predicting Parking Spaces Using CEEMDAN and GRU

马昌喜1,黄晓婷1,孟炜2   

  1. 1. School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China; 2. Gansu Longyuan Information Technology Co., Ltd., Lanzhou 730030, China
  • Received:2023-04-18 Accepted:2023-06-19 Online:2025-09-26 Published:2023-12-01

摘要: 剩余停车位的精准预测对于优化停车资源利用率、改善交通状况起着至关重要的作用。然而,以往的研究大多基于停车本身的历史数据或影响停车预测的众多因素进行模型建模,增加了数据的复杂性和运行模型所花费的时间,导致模型与极值点的拟合度较差。针对这一问题,提出一种基于完全自适应噪声集合经验模态分解(CEEMDAN)和门循环单元(GRU)模型的混合预测模型来预测停车剩余位数。在该模型中,CEEMDAN作为序列平滑分解模块,可以逐步分解不同尺度的时间序列波动或趋势,生成一系列具有不同特征尺度的本征模态函数(IMF)。然后,通过保留原始数据的大部分信息,主成分分析(PCA)减少了分解的IMF序列维度,消除了冗余信息,提高了预测响应速度。之后,高级抽象特征输入GRU网络,基于深度学习框架Keras完成网络的搭建、测试、预测。利用立体停车场采集的真实停车数据集验证了所提模型的有效性。实验结果表明,本文提出的模型在预测准确性方面优于基准模型,即更低的测试误差。CEEMDAN-PCA-GRU模型最接近真实的停车时间序列。因此,该方法在停车位预测方面比其他模型更有效。

关键词: 停车预测, 主成分分析(PCA), 深度学习, 完全自适应噪声集合经验模态分解 (CEEMDAN), 门循环单元(GRU), 时间序列

Abstract: Accurate prediction of parking spaces plays a crucial role in maximizing the efficiency of parking resources and optimizing traffic conditions. However, the majority of earlier research has used models based on past parking data or the plethora of variables that influence parking prediction, which not only makes the data more complicated and costs more time to run but can also lead to poor model fits. To solve this problem, a hybrid parking prediction model combining complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and gated recurrent unit (GRU) model is proposed to predict the number of parking spaces. In this model, CEEMDAN has the ability to gradually break down time series fluctuations or trends at various scales, producing a sequence of intrinsic mode functions (IMF) with various characteristic scales. Then, by keeping the majority of the original data’s content, removing superfluous information, and enhancing predicted response time, principal component analysis (PCA) decreases the dimensionality of the IMF series. Subsequently, the high-level abstract characteristics are entered into the GRU network, and the network is built, tested, and predicted based on the deep learning framework Keras. The validity of the presented model is verified by making use of real parking datasets from two three-dimensional parking lots. The test results reveal that the model outperforms the baseline model’s predictive accuracy, i.e., a lower testing error. The real parking time series are most closely modeled by the CEEMDAN-PCA-GRU model. As a result, the method is superior to existing models for parking prediction.

中图分类号: