上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (4): 525-532.doi: 10.16183/j.cnki.jsjtu.2023.340
梁煜婉1,2, 肖朝昀1,2,3(), 李明广4, 孟江山5, 周建烽1,2, 黄山景3, 朱浩杰3
收稿日期:
2023-07-24
修回日期:
2023-10-27
接受日期:
2023-11-17
出版日期:
2025-04-28
发布日期:
2025-05-09
通讯作者:
肖朝昀
E-mail:zyxiao@hqu.edu.cn
作者简介:
梁煜婉(1998—),硕士生,从事地下工程与地基基础研究.
基金资助:
LIANG Yuwan1,2, XIAO Zhaoyun1,2,3(), LI Mingguang4, MENG Jiangshan5, ZHOU Jianfeng1,2, HUANG Shanjing3, ZHU Haojie3
Received:
2023-07-24
Revised:
2023-10-27
Accepted:
2023-11-17
Online:
2025-04-28
Published:
2025-05-09
Contact:
XIAO Zhaoyun
E-mail:zyxiao@hqu.edu.cn
摘要:
为探寻一种更加准确的真空预压地基处理沉降预测方法,以厦门新机场规划片区东园地块造地二期工程为例,构建基于长短时记忆(LSTM)神经网络的真空预压地基处理沉降预测模型.选取两个区域的实测沉降数据作为数据基础,对比传统沉降预测法(浅岗法、三点法和双曲线法)与LSTM神经网络预测结果.研究结果表明:当真空预压地基处理工况下出现真空膜破损引发沉降量回弹的现象时,相较于传统预测方法,LSTM的均方根误差eRMSE和平均绝对值误差eMAE均下降45%以上,且该方法的预测结果有明显的上升趋势,能够准确预测出沉降回弹情况.在预测误差方面,考虑真空度和沉降变化的LSTM模型比仅考虑沉降时序的LSTM模型的eRMSE和eMAE降低60%及以上.该研究可为真空预压地基沉降预测提供先进的数据驱动预测方法.
中图分类号:
梁煜婉, 肖朝昀, 李明广, 孟江山, 周建烽, 黄山景, 朱浩杰. 基于长短时记忆的真空预压地基沉降预测[J]. 上海交通大学学报, 2025, 59(4): 525-532.
LIANG Yuwan, XIAO Zhaoyun, LI Mingguang, MENG Jiangshan, ZHOU Jianfeng, HUANG Shanjing, ZHU Haojie. Ground Settlement Prediction by Vacuum Preloading Based on LSTM[J]. Journal of Shanghai Jiao Tong University, 2025, 59(4): 525-532.
[1] | SRIDHARAN A, MURTHY N S, PRAKASH K. Rectangular hyperbola method of consolidation analysis[J]. Géotechnique, 1987, 37(3): 355-368. |
[2] | 曾国熙, 杨锡令. 砂井地基沉陷分析[J]. 浙江大学学报, 1959(3): 34-72. |
ZENG Guoxi, YANG Xiling. Analysis of sand well foundation subsidence[J]. Journal of Zhejiang University, 1959(3): 34-72. | |
[3] | ASAOKA A. Observational procedure of settlement prediction[J]. Soils and Foundations, 1978, 18(4): 87-101. |
[4] | 潘林有, 谢新宇. 用曲线拟合的方法预测软土地基沉降[J]. 岩土力学, 2004, 25(7): 1053-1058. |
PAN Linyou, XIE Xinyu. Observational settlement prediction by curves fitting methods[J]. Rock and Soil Mechanics, 2004, 25(7): 1053-1058. | |
[5] | 黄广军. Asaoka法预测软土地基沉降时存在的问题和对策[J]. 岩土力学, 2016, 37(4): 1061-1065. |
HUANG Guangjun. Problems and their solutions in predicting soft ground settlement based on Asaoka’s method[J]. Rock Soil Mechanics, 2016, 37(4): 1061-1065. | |
[6] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
doi: 10.1162/neco.1997.9.8.1735 pmid: 9377276 |
[7] | XU Y, LU X, CETINER B, et al. Real-time regional seismic damage assessment framework based on long short-term memory neural network[J]. Computer-Aided Civil and Infrastructure Engineering, 2021, 36(4): 504-521. |
[8] | SENANAYAKE S, PRADHAN B, ALAMRI A, et al. A new application of deep neural network (LSTM) and RUSLE models in soil erosion prediction[J]. Science of The Total Environment, 2022, 845: 157-220. |
[9] |
刘俊城, 谭勇, 张生杰. 地铁车站深基坑开挖变形智能多步预测方法[J]. 上海交通大学学报, 2024, 58(7): 1108-1117.
doi: 10.16183/j.cnki.jsjtu.2022.419 |
LIU Juncheng, TAN Yong, ZHANG Shengjie. Intelligent multi-step prediction method for deep foundation pit deformation of subway station[J]. Journal of Shanghai Jiao Tong University, 2024, 58(7): 1108-1117. | |
[10] | GAO B, WANG R R, LIN C, et al. TBM penetration rate prediction based on the long short-term memory neural network[J]. Underground Space, 2021, 6(6): 718-731. |
[11] | HU Y, GU C, MENG Z, et al. Prediction for the settlement of concrete face rockfill dams using optimized LSTM model via correlated monitoring data[J]. Water, 2022, 14(14): 21-57. |
[12] | 王启贵, 吴忠明, 陈兴红. 基于机器学习LSTM方法的大面积高填土沉降预测[J]. 工程勘察, 2022, 50(8): 41-45. |
WANG Qigui, WU Zhongming, CHEN Xinghong. Large area high fill settlement prediction based on machine learning LSTM method[J]. Engineering Investigation and Investigation, 2022, 50(8): 41-45. | |
[13] | 龚晓南, 岑仰润. 真空预压加固软土地基机理探讨[J]. 哈尔滨建筑大学学报, 2002(2): 7-10. |
GONG Xiaonan, CEN Yangrun. Discussion on mechanism of vacuum preloading strengthening soft soil foundation[J]. Journal of Harbin Jianzhu University, 2002(2): 7-10. |
[1] | . 基于RGB-D图像的机器人抓取检测高效全卷积网络和优化方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 399-416. |
[2] | . 基于双流自编码器的无监督动作识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 330-336. |
[3] | Sahaya Anselin Nisha1, NARMADHA R.1, AMIRTHALAKSHMI T. M.2, BALAMURUGAN V.1, VEDANARAYANAN V.1. LOBO优化的深度卷积神经网络用于脑肿瘤分类[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 107-114. |
[4] | 徐旺旺1,2,许良凤1,2,刘宁徽3,律娜3. 基于多注意力卷积神经网络的乳腺癌组织学图像诊断[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 91-106. |
[5] | 王于波, 郝玲, 徐飞, 陈文彬, 郑利斌, 陈磊, 闵勇. 分布式光伏集群发电功率波动模式识别与超短期概率预测[J]. 上海交通大学学报, 2024, 58(9): 1334-1343. |
[6] | 李明爱1, 2, 魏丽娜1. 基于朴素卷积神经网络和线性插值的运动想像分类[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 958-966. |
[7] | 崔闪, 潘俊杨, 王伟, 郭叶, 许江涛. 基于深度学习的防空反导拦截决策研究[J]. 空天防御, 2024, 7(5): 54-64. |
[8] | 刘婧, 郭晓雷, 张欣海, 毛靖军, 吕瑞恒. 空面导弹轻量化空中斜框目标检测算法[J]. 空天防御, 2024, 7(4): 106-113. |
[9] | 张彦军1,4,5,6,7, 王碧云2,3 , 蔡云泽1,4,5,6,7. 基于注意力的多通道网络红外弱小目标检测[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 414-427. |
[10] | 程相伟, 张大旭, 杜永龙, 郭洪宝, 洪智亮. 基于X射线CT原位试验的平纹SiCf/SiC压缩损伤演化机理[J]. 上海交通大学学报, 2024, 58(2): 232-241. |
[11] | 朱昶胜,朱丽娜. 基于经验小波变换、循环神经网络和误差校正的短期风速预测[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 297-308. |
[12] | 林照晨, 张欣然, 刘紫阳, 贺风华, 欧阳磊. 基于深度学习的高超声速飞行器运动行为识别[J]. 空天防御, 2024, 7(1): 48-55. |
[13] | 沈傲1, 2,胡冀苏2, 3,金鹏飞4,周志勇2,钱旭升2, 3,郑毅2,包婕4,王希明4,戴亚康1, 2. 基于课程学习训练的聚合注意力网络Multi-SEANet用于MRI图像的格里森级别组无创预测[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 109-119. |
[14] | 卫慧, 陈鹏, 张芮菡, 程正顺. 基于长短期记忆网络的大型漂浮式风力发电机平台运动极短期预报方法[J]. 上海交通大学学报, 2023, 57(S1): 37-45. |
[15] | 曾志贤,曹建军,翁年凤,袁震,余旭. 基于细粒度联合注意力机制的图像-文本跨模态实体分辨[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 728-737. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 157
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1331
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||