上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (4): 525-532.doi: 10.16183/j.cnki.jsjtu.2023.340

• 船舶海洋与建筑工程 • 上一篇    下一篇

基于长短时记忆的真空预压地基沉降预测

梁煜婉1,2, 肖朝昀1,2,3(), 李明广4, 孟江山5, 周建烽1,2, 黄山景3, 朱浩杰3   

  1. 1.华侨大学 土木工程学院,福建 厦门 361021
    2.福建省智慧基础设施与监测重点实验室, 福建 厦门 361021
    3.华土木(厦门)科技有限公司,福建 厦门 361000
    4.上海交通大学 船舶海洋与建筑工程学院,上海 200240
    5.中交广州航道局有限公司,广州 510290
  • 收稿日期:2023-07-24 修回日期:2023-10-27 接受日期:2023-11-17 出版日期:2025-04-28 发布日期:2025-05-09
  • 通讯作者: 肖朝昀 E-mail:zyxiao@hqu.edu.cn
  • 作者简介:梁煜婉(1998—),硕士生,从事地下工程与地基基础研究.
  • 基金资助:
    国家自然科学基金(52278361);福建省高校产学合作(2023Y4007)

Ground Settlement Prediction by Vacuum Preloading Based on LSTM

LIANG Yuwan1,2, XIAO Zhaoyun1,2,3(), LI Mingguang4, MENG Jiangshan5, ZHOU Jianfeng1,2, HUANG Shanjing3, ZHU Haojie3   

  1. 1. College of Civil Engineering, Huaqiao University, Xiamen 361021, Fujian, China
    2. Key Laboratory for Intelligent Infrastructure and Monitoring of Fujian Province, Xiamen 361021, Fujian, China
    3. China Civil Engineering (Xiamen) Technology Co., Ltd., Xiamen 361000, Fujian, China
    4. School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    5. CCCC Guangzhou Dredging Co., Ltd., Guangzhou 510290, China
  • Received:2023-07-24 Revised:2023-10-27 Accepted:2023-11-17 Online:2025-04-28 Published:2025-05-09
  • Contact: XIAO Zhaoyun E-mail:zyxiao@hqu.edu.cn

摘要:

为探寻一种更加准确的真空预压地基处理沉降预测方法,以厦门新机场规划片区东园地块造地二期工程为例,构建基于长短时记忆(LSTM)神经网络的真空预压地基处理沉降预测模型.选取两个区域的实测沉降数据作为数据基础,对比传统沉降预测法(浅岗法、三点法和双曲线法)与LSTM神经网络预测结果.研究结果表明:当真空预压地基处理工况下出现真空膜破损引发沉降量回弹的现象时,相较于传统预测方法,LSTM的均方根误差eRMSE和平均绝对值误差eMAE均下降45%以上,且该方法的预测结果有明显的上升趋势,能够准确预测出沉降回弹情况.在预测误差方面,考虑真空度和沉降变化的LSTM模型比仅考虑沉降时序的LSTM模型的eRMSEeMAE降低60%及以上.该研究可为真空预压地基沉降预测提供先进的数据驱动预测方法.

关键词: 深度学习, 长短期记忆网络, 真空预压, 沉降预测

Abstract:

In order to explore a more accurate method for predicting settlement in vacuum preloading foundation treatment, a vacuum preloading settlement prediction model based on long short-term memory (LSTM) neural network was developed, taking the second-phase land reclamation project in the East Park of Xiamen New Airport planning area as an example. Measured settlement data from two regions were selected as the dataset, and the results were compared with traditional settlement prediction methods including the Asaoka method, three-point method, and hyperbolic method. The results show that the prediction model based on the LSTM neural network considering only sedimentation time series outerperforms the traditional methods that rely only on sedimentation time series. When the vacuum film is damaged and settlement rebound occurs under vacuum precompression foundation treatment, the root mean squared error (eRMSE) and the mean absolute error (eMAE) of LSTM model decrease by more than 45% compared to the traditional methods. Additionly, this model accurately captures the settlement rebound trend, providing more reliable prediction. In terms of prediction error, the eRMSE and eMAE values of the LSTM model which considers vacuum degree and sedimentation are lower than those of the LSTM model which only considers sedimentation time series by over 60%. This paper offers an advanced data-driven prediction method for prediction in vacuum preloading foundation settlement.

Key words: deep learning, long short term memory (LSTM), vacuum preloading, settlement prediction

中图分类号: