上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (4): 513-524.doi: 10.16183/j.cnki.jsjtu.2023.350
王嘉琛1, 孟令赞1,2, 张顶立1(), 卢松1, 文明3
收稿日期:
2023-07-28
修回日期:
2024-02-20
接受日期:
2024-03-27
出版日期:
2025-04-28
发布日期:
2025-05-09
通讯作者:
张顶立
E-mail:zhang_dingli@263.net
作者简介:
王嘉琛(1998—),博士生,从事隧道与地下工程研究.
基金资助:
WANG Jiachen1, MENG Lingzan1,2, ZHANG Dingli1(), LU Song1, WEN Ming3
Received:
2023-07-28
Revised:
2024-02-20
Accepted:
2024-03-27
Online:
2025-04-28
Published:
2025-05-09
Contact:
ZHANG Dingli
E-mail:zhang_dingli@263.net
摘要:
常规的弹性解无法对具有强蠕变特性的软岩隧道变形规律提出合理解释.因此,针对软岩隧道施工的时间-空间效应,引入Burgers模型揭示其时空演化规律,并通过数值计算探究不同因素对黏弹性围岩纵向变形规律的影响.同时基于响应面法得到位移释放系数的经验公式,与现场监测和其他理论比较验证了本文方法的可行性.研究结果表明地应力对位移释放系数影响可忽略,Kelvin切变模量、Kelvin黏滞系数、Maxwell切变模量和开挖速度显著影响位移释放系数,而根据延滞时间的不同可分为低延滞系数、中延滞系数和高延滞系数3类;针对时间效应影响型、空间效应影响型和时空效应影响型3种黏弹性围岩纵向变形曲线类型拟合得到相应的经验公式.研究结论可为软岩隧道变形预测提供更简便的方法.
中图分类号:
王嘉琛, 孟令赞, 张顶立, 卢松, 文明. 黏弹性围岩纵向变形曲线及其释放系数演化规律[J]. 上海交通大学学报, 2025, 59(4): 513-524.
WANG Jiachen, MENG Lingzan, ZHANG Dingli, LU Song, WEN Ming. Evolution Law of Longitudinal Deformation Curve and Release Coefficient of Viscoelastic Rock[J]. Journal of Shanghai Jiao Tong University, 2025, 59(4): 513-524.
表1
14种实际Burgers参数
系列 | GK/GPa | ηK/(GPa·h) | GM/GPa | K/MPa | 系列 | GK/GPa | ηK/(GPa·h) | GM/GPa | K/MPa |
---|---|---|---|---|---|---|---|---|---|
1 | 3.72 | 0.13 | 8.90 | 95.14 | 8 | 3.23 | 16.7 | 0.410 | 160.32 |
2 | 2.38 | 0.11 | 5.16 | 65.79 | 9 | 0.94 | 9.7 | 0.088 | 74.36 |
3 | 0.23 | 0.03 | 0.68 | 47.44 | 10 | 4.21 | 155.2 | 9.770 | 58.33 |
4 | 9.75 | 0.23 | 16.66 | 60.42 | 11 | 2.27 | 185.3 | 1.660 | 168.00 |
5 | 3.65 | 0.13 | 8.42 | 70.83 | 12 | 2.27 | 182.4 | 2.020 | 178.79 |
6 | 2.38 | 0.11 | 4.85 | 48.48 | 13 | 0.28 | 91.1 | 0.160 | 50.79 |
7 | 12.61 | 286.20 | 22.54 | 186.31 | 14 | 0.07 | 44.6 | 0.058 | 111.73 |
表3
系列7位移释放系数计算参数
工况 | GK/GPa | ηK/(GPa·h) | GM/GPa | K/MPa | 工况 | GK/GPa | ηK/(GPa·h) | GM/GPa | K/MPa |
---|---|---|---|---|---|---|---|---|---|
K-1 | 12.61 | 286.20 | 22.54 | 18.63 | ηK-1 | 12.61 | 28.62 | 22.54 | 186.31 |
K-2 | 12.61 | 286.20 | 22.54 | 93.16 | ηK-2 | 12.61 | 143.10 | 22.54 | 186.31 |
K-3 | 12.61 | 286.20 | 22.54 | 279.47 | ηK-3 | 12.61 | 429.30 | 22.54 | 186.31 |
K-4 | 12.61 | 286.20 | 22.54 | 1 863.10 | ηK-4 | 12.61 | 28620 | 22.54 | 186.31 |
GK-1 | 1.261 | 286.20 | 22.54 | 186.31 | GM-1 | 12.61 | 286.20 | 2.254 | 186.31 |
GK-2 | 6.31 | 286.20 | 22.54 | 186.31 | GM-2 | 12.61 | 286.20 | 11.27 | 186.31 |
GK-3 | 18.92 | 286.20 | 22.54 | 186.31 | GM-3 | 12.61 | 286.20 | 33.81 | 186.31 |
GK-4 | 126.10 | 286.20 | 22.54 | 186.31 | GM-4 | 12.61 | 286.20 | 225.40 | 186.31 |
[1] | 侯公羽, 李晶晶. 弹塑性变形条件下围岩-支护相互作用全过程解析[J]. 岩土力学, 2012, 33(4): 961-970. |
HOU Gongyu, LI Jingjing. Analysis of complete process of interaction of surrounding rock and support under elastioplastic deformation condition[J]. Rock and Soil Mechanics, 2012, 33(4): 961-970. | |
[2] | WANG Y, WANG J C, PENG F. Study on the characteristics of surrounding rock and design of backfill material parameters for tunnels passing through giant caverns and underground rivers[J]. Applied Sciences, 2022, 12(8): 3906. |
[3] | DO D P, TRAN N T, MAI V T, et al. Time-dependent reliability analysis of deep tunnel in the viscoelastic burger rock with sequential installation of liners[J]. Rock Mechanics and Rock Engineering, 2020, 53(3): 1259-1285. |
[4] | EUGIE K, MURAT K, EMMANUEL K C. Time-dependent solution for non-circular tunnels considering the elasto-viscoplastic rockmass[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 133: 104395. |
[5] | ZHAO N, SHAO Z, WU K, et al. Time-dependent solutions for lined circular tunnels considering rockbolts reinforcement and face advancement effects[J]. International Journal of Geomechanics, 2021, 21(10): 04021179. |
[6] | GU S C, HE H W, HUANG R B. Stress-strain calculation method of composite lining considering the creep characteristics of tunnel surrounding rock[J]. Advances in Civil Engineering, 2021, 21(10): 7521435. |
[7] | WANG H N, SONG F, ZHAO T, et al. Solutions for lined circular tunnels sequentially constructed in rheological rock subjected to non-hydrostatic initial stresses[J]. European Journal of Environmental and Civil Engineering, 2022, 26(5): 1834-1866. |
[8] | ZENG G S, WANG H N, JIANG M J, et al. Analytical solution of displacement and stress induced by the sequential excavation of noncircular tunnels in viscoelastic rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 134: 104429. |
[9] | CHU Z, WU Z, LIU Q, et al. Analytical solution for lined circular tunnels in deep viscoelastic burgers rock considering the longitudinal discontinuous excavation and sequential installation of liners[J]. Journal of Engineering Mechanics, 2021, 147(4): 04021009. |
[10] | ALI R K, HADI H, NIMA B. Time-dependent analysis of stress components around lined tunnels with circular configuration considering tunnel advancing rate effects[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 133: 104422. |
[11] | 苏永华, 邹宇恒. 基于Hoek-Brown软化模型的支护结构稳定性分析[J]. 中南大学学报(自然科学版), 2020, 51(2): 453-463. |
SUN Yonghua, ZOU Yuheng. Stability analysis of support structure based on Hoek-Brown strain-softening model[J]. Journal of Central South University(Science and Technology), 2020, 51(2): 453-463. | |
[12] | 谭代明, 漆泰岳, 莫阳春. 考虑时空效应的软弱围岩隧道施工稳定性研究[J]. 水文地质工程地质, 2009, 36(4): 85-89. |
TAN Daiming, QI Taiyue, MO Yangchun. Study on construction stability of soft surrounding rock tunnel considering time-space effect[J]. Hydrogeology and Engineering Geology, 2009, 36(4): 85-89. | |
[13] | 霍晓龙, 陈寿根, 张小明. 唐家山隧道施工特性及时空效应研究[J]. 施工技术, 2012, 41(19): 79-83. |
HUO Xiaolong, CHEN Shougen, ZHANG Xiao-ming. Study on construction characteristic and temporal-spatial effect of Tangjiashan tunnel[J]. Construction Technology, 2012, 41(19): 79-83. | |
[14] | LIU C, ZHANG D, ZHANG S, et al. Interaction analysis between composite supports and rheological rock considering progressive hardening characteristic of shotcrete[J]. Construction and Building Materials, 2023, 374: 130876. |
[15] | LIU C, ZHANG D, ZHANG S, et al. Long-term mechanical analysis of tunnel structures in rheological rock considering the degradation of primary lining[J]. Underground Space, 2023, 10: 217-232. |
[16] | LIU C, ZHANG S, ZHANG D, et al. Model tests on progressive collapse mechanism of a shallow subway tunnel in soft upper and hard lower composite strata[J]. Tunnelling and Underground Space Technology, 2023, 131: 104824. |
[17] | 王嘉琛, 张顶立, 孙振宇, 等. 水平互层围岩隧道破坏机理及其范围预测模型[J]. 力学学报, 2022, 54(10): 2835-2849. |
WANG Jiachen, ZHANG Dingli, SUN Zhenyu, et al. Failure mechanism and scope prediction model of horizontal interbedded surrounding rock tunnel[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2835-2849. | |
[18] | 卢伟. 断层破碎带隧道洞周变形时空效应研究[J]. 结构工程师, 2019, 35(3): 236-242. |
LU Wei. Research on the space-time effect of the fault fracture zone with tunnel surrounding rock deformation[J]. Structural Engineers, 2019, 35(3): 236-242. | |
[19] | 左清军, 吴友银, 闫天玺. 特大断面板岩隧道施工期围岩变形时空效应分析[J]. 防灾减灾工程学报, 2018, 38(2): 233-243. |
ZUO Qingjun, WU Youyin, YAN Tianxi. Analysis of time-space effect for surrounding rock deformation in super-large cross section slate tunnel during construction period[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(2): 233-243. | |
[20] | 王建, 袁枫斌, 袁龙. 特大断面砂质板岩隧道V级围岩变形时空效应[J]. 科学技术与工程, 2020, 20(5): 2048-2052. |
WANG Jian, YUAN Fengbin, YUAN Long. Temporal and spatial effects of V-type surrounding rock deformation in extra large section sandy slate tunnel[J]. Science Technology and Engineering, 2020, 20(5): 2048-2052. | |
[21] | 杨成忠, 吴宇健, 王威, 等. 大断面软岩隧道开挖空间效应影响分析[J]. 地下空间与工程学报, 2021, 17(2): 511-519. |
YANG Chengzhong, WU Yujian, WANG Wei, et al. Analysis on influence of spacial effect on excavation of soft rock tunnel with large cross section[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(2): 511-519. | |
[22] | PANET M, GUENOT A. Analysis of convergence behind the face of a tunnel[C]// Tunnelling 82, Proceedings of the 3rd International Symposium. Brighton, UK: IMM, 1982: 197-204. |
[23] | CORBETTA F, BERNAUD D, MINH D N. Contribution à la méthode convergence-confinement par le principe de la similitude[J]. Revue Française de Géotechnique, 1991(54): 5-11. |
[1] | 熊一帆, 应宏伟, 张金红, 程康, 李冰河. 考虑时空效应的杭州软黏土超深基坑地表沉降分析方法[J]. 上海交通大学学报, 2025, 59(1): 48-59. |
[2] | 樊鹏玄,陈务军,胡建辉,赵兵,房光强,曹争利,彭福军. 环氧基形状记忆聚合物超弹-黏弹性本构及大应变率相关性[J]. 上海交通大学学报, 2019, 53(9): 1017-1022. |
[3] | 郭大猷, 黄小平, 王芳. 有机玻璃观察窗的蠕变特性及数值模拟[J]. 上海交通大学学报, 2019, 53(5): 513-520. |
[4] | 章红兵,范凡,胡昊. 基坑群施工对邻近隧道影响与隧道保护[J]. 上海交通大学学报(自然版), 2016, 50(05): 803-809. |
[5] | 赵兵, 陈务军, 胡建辉, 邱振宇, 宋浩, 蔡晶. 基于平面裁切的三角形乙烯-四氟乙烯气枕成形试验及数值模拟[J]. 上海交通大学学报, 2016, 50(03): 377-383. |
[6] | 禹海涛, 袁勇, 朱毅敏, 王建华. 施工振动下基于黏弹性边界的地下结构动力特性模拟[J]. 上海交通大学学报, 2012, 46(01): 64-68. |
[7] | 沈中城,张进峰,严勇健,关大友. 精密扭摆内耗仪的研究进展及其钢中固溶碳测定 [J]. 上海交通大学学报(自然版), 2010, 44(05): 683-0686. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 196
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1565
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||