J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (5): 1009-1017.doi: 10.1007/s12204-024-2696-1

• • 上一篇    下一篇

CenterLineFormer:基于单车载相机的车道中心线生成方法

  

  1. 上海交通大学 电子信息与电气工程学院,上海200240
  • 收稿日期:2023-01-06 接受日期:2023-03-01 出版日期:2025-09-26 发布日期:2024-01-05

CenterLineFormer: Road Centerlines Graph Generation with Single Onboard Camera

秦明辉,刘沅秩,吕娜,陶卫,赵辉   

  1. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2023-01-06 Accepted:2023-03-01 Online:2025-09-26 Published:2024-01-05

摘要: 随着自动驾驶系统的迅速发展,车载感知算法对道路结构信息的需求激增。作为高精度地图中的道路结构层元素之一,车道中心线对于运动预测和决策规划等下游任务至关重要。考虑到车道中心线的复杂拓扑结构和重叠问题,以前的研究很少探讨车道中心线的生成问题。而基于深度学习的众包地图生成方法往往需要启发式后处理来生成车道中心线的道路结构信息。本文提出了一种基于深度注意力网络的端到端的车道中心线生成方法,CenterLineFormer,以单目车载相机作为传感器,生成鸟瞰图空间中表征道路驾驶态势的车道中心线结构图。提出了一种基于动态投影的可变性交叉注意力机制,该机制通过特征空间转换生成稠密的鸟瞰图空间特征图。可以描述不同中心线之间的连接关系,并为下游算法(例如规划和控制)生成矢量化的车道中心线结构图,避免后处理过程。实验表明,提出的方法在自动驾驶公开数据集上的表现优于现有算法,并且可以在夜间驾驶和复杂的交通路口场景中生成更准确的车道中心线结构图。

关键词: 自动驾驶, 生成车道中心线, 注意力机制

Abstract: As autonomous driving systems advance rapidly, there is a surge in demand for high-definition (HD) maps that provide accurate and dependable prior information on static environments around vehicles. As one of the main high-level elements in HD maps, the road lane centerline is essential for downstream tasks such as autonomous navigation and planning. Considering the complex topology and significant overlap concerns of road centerlines, previous studies have rarely examined the centerline HD map mapping problem. Recent learningbased pipelines take heuristic post-processing predictions to generate a structured centerline output without instance information. To ameliorate this situation, we propose a novel, end-to-end road centerlines vectorized graph generation pipeline, termed CenterLineFormer. CenterLineFormer takes a single onboard camera image as input and predicts a directed graph representing the lane-layer map in the bird’s-eye view (BEV). We propose a strategy for better view transformation that uses a cross-attention mechanism to generate a dense BEV feature map. With our pipeline, we can describe the connection relationship between different centerlines and generate structured lane graphs for downstream modules as planning and control. Qualitatively, our experiments emphasize that our pipeline achieves a superior performance against previous baselines on nuScenes dataset. We also show that CenterLineFormer can generate accurate centerline graph topologies on night driving and complex traffic intersection scenes.

中图分类号: