J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (5): 1009-1017.doi: 10.1007/s12204-024-2696-1
收稿日期:
2023-01-06
接受日期:
2023-03-01
出版日期:
2025-09-26
发布日期:
2024-01-05
秦明辉,刘沅秩,吕娜,陶卫,赵辉
Received:
2023-01-06
Accepted:
2023-03-01
Online:
2025-09-26
Published:
2024-01-05
摘要: 随着自动驾驶系统的迅速发展,车载感知算法对道路结构信息的需求激增。作为高精度地图中的道路结构层元素之一,车道中心线对于运动预测和决策规划等下游任务至关重要。考虑到车道中心线的复杂拓扑结构和重叠问题,以前的研究很少探讨车道中心线的生成问题。而基于深度学习的众包地图生成方法往往需要启发式后处理来生成车道中心线的道路结构信息。本文提出了一种基于深度注意力网络的端到端的车道中心线生成方法,CenterLineFormer,以单目车载相机作为传感器,生成鸟瞰图空间中表征道路驾驶态势的车道中心线结构图。提出了一种基于动态投影的可变性交叉注意力机制,该机制通过特征空间转换生成稠密的鸟瞰图空间特征图。可以描述不同中心线之间的连接关系,并为下游算法(例如规划和控制)生成矢量化的车道中心线结构图,避免后处理过程。实验表明,提出的方法在自动驾驶公开数据集上的表现优于现有算法,并且可以在夜间驾驶和复杂的交通路口场景中生成更准确的车道中心线结构图。
中图分类号:
. CenterLineFormer:基于单车载相机的车道中心线生成方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1009-1017.
QIN Minghui, LIU Yuanzhi, L Na, TAO Wei, ZHAO Hui. CenterLineFormer: Road Centerlines Graph Generation with Single Onboard Camera[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1009-1017.
[1] SEIF H G, HU X L. Autonomous driving in the iCity—HD maps as a key challenge of the automotive industry [J]. Engineering, 2016, 2(2): 159-162. [2] MA W C, URTASUN R, TARTAVULL I, et al. Exploiting sparse semantic HD maps for self-driving vehicle localization [C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems. Macau: IEEE, 2019: 5304-5311. [3] CHEN D, ZHOU B, KOLTUN V, et al. Learning by Cheating[C]// 3rd Conference on Robot Learning. Osakan: PMLR, 2019: 66-75. [4] CUI H G, RADOSAVLJEVIC V, CHOU F C, et al. Multimodal trajectory predictions for autonomous driving using deep convolutional networks [C]//2019 International Conference on Robotics and Automation. Montreal: IEEE, 2019: 2090-2096. [5] HONG J, SAPP B, PHILBIN J. Rules of the road: Predicting driving behavior with a convolutional model of semantic interactions [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 8446-8454. [6] BASTANI F, HE S T, ABBAR S, et al. RoadTracer: automatic extraction of road networks from aerial images [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4720-4728. [7] HOMAYOUNFAR N, MA W C, LAKSHMIKANTH S K, et al. Hierarchical recurrent attention networks for structured online maps [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 3417-3426. [8] XU Z H, SUN Y X, LIU M. Topo-boundary: A benchmark dataset on topological road-boundary detection using aerial images for autonomous driving [J]. IEEE Robotics and Automation Letters, 2021, 6(4): 7248-7255. [9] LIANG J, HOMAYOUNFAR N, MA W C, et al. Convolutional recurrent network for road boundary extraction [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 9504-9513. [10] XU Z H, SUN Y X, LIU M. iCurb: Imitation learning-based detection of road curbs using aerial images for autonomous driving [J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1097-1104. [11] RODDICK T, CIPOLLA R. Predicting semantic map representations from images using pyramid occupancy networks [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11135-11144. [12] YANG B, LIANG M, URTASUN R. HDNET: Exploiting HD maps for 3D object detection [DB/OL]. (2020-12-21). https://arxiv.org/abs/2012.11704 [13] LI Q, WANG Y, WANG Y L, et al. HDMapNet: an online HD map construction and evaluation framework [C]//2022 International Conference on Robotics and Automation. Philadelphia: IEEE, 2022: 4628-4634. [14] XU H Q, YANG M, DENG L Y, et al. Semantic segmentation-based road marking detection using around view monitoring system [J]. Journal of Shanghai Jiao Tong University (Science), 2022, 27(6): 833-843. [15] CAN Y B, LINIGER A, PAUDEL D P, et al. Structured bird’s-eye-view traffic scene understanding from onboard images [C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 15641-15650. [16] CAN Y B, LINIGER A, PAUDEL D P, et al. Topology preserving local road network estimation from single onboard camera image [C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 17242-17251. [17] CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[M]//European conference on computer vision. Cham: Springer, 2018: 833-851. [18] CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 3213-3223. [19] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936-944. [20] MALLOT H A, BÜLTHOFF H H, LITTLE J J, et al. Inverse perspective mapping simplifies optical flow computation and obstacle detection [J]. Biological Cybernetics, 1991, 64(3): 177-185. [21] ZHU X, SU W, LU L, et al. Deformable detr: Deformable transformers for end-to-end object detection[C]// 2021 7th International Conference on Learning Representations. Online: ICLR, 2021:1-16. [22] CAESAR H, BANKITI V, LANG A H, et al. nuScenes: A multimodal dataset for autonomous driving [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11618-11628. [23] LOSHCHILOV I, HUTTER F. Decoupled Weight Decay Regularization[C]// 2019 7th International Conference on Learning Representations. New Orleans: ICLR, 2019:1-19. [24] ACUNA D, LING H, KAR A, et al. Efficient interactive annotation of segmentation datasets with polygon-RNN [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 859-868. [25] KO Y, LEE Y, AZAM S, et al. Key points estimation and point instance segmentation approach for lane detection [J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 8949-8958. |
[1] | . 基于多注意力机制的轻量化人体姿态估计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 899-910. |
[2] | . 基于多特征提取方法的多场景烟雾检测[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 866-879. |
[3] | . 基于ALBERT的中国诗酒文化命名实体识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1065-1072. |
[4] | . 迁移学习和注意机制融合用于CT图像COVID-19病灶分割的计算机辅助诊断[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 566-581. |
[5] | 王可, 刘奕阳, 杨杰, 鲁爱国, 李哲, 徐明亮. 基于自适应特征增强和融合的舰载机着舰拉制状态识别[J]. 上海交通大学学报, 2025, 59(2): 274-282. |
[6] | 徐旺旺1,2,许良凤1,2,刘宁徽3,律娜3. 基于多注意力卷积神经网络的乳腺癌组织学图像诊断[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 91-106. |
[7] | 李楚晨, 唐善军, 赵冰青. 一种基于无人机探测图像区块信息的弱小目标检测算法[J]. 空天防御, 2025, 8(1): 41-47. |
[8] | 丁黎辉1, 2, 付立军1, 3, 杨光4, 5, 6, 万林4, 5, 常志军7. 基于视频的婴儿癫痫性痉挛综合征检测:建模、检测与评估[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 1-9. |
[9] | 周成, 蒋祖华. 融入优质主题和注意力机制的设计规范命名实体识别方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1169-1180. |
[10] | 彭诗玮1, 张希1, 朱旺旺1, 窦瑞2. 融合乘客感受量化指标的智能汽车舒适性研究[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1063-1070. |
[11] | 李利娟, 刘海, 刘红良, 张青松, 陈永东. 融合外部注意力机制的序列到点非侵入式负荷分解[J]. 上海交通大学学报, 2024, 58(6): 846-854. |
[12] | 李翠明, 王华, 徐龙儿, 王龙. 基于改进DeepLabv3+的光伏电站道路识别方法[J]. 上海交通大学学报, 2024, 58(5): 776-782. |
[13] | 鄢丛强1,2, 郭正玉3,4, 蔡云泽 1,2. 基于改进CycleGAN的SAR图像舰船尾迹数据增强[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 702-711. |
[14] | 陈昊蓝, 靳冰莹, 刘亚东, 钱庆林, 王鹏, 陈艳霞, 于希娟, 严英杰. 基于门控循环注意力网络的配电网故障识别方法[J]. 上海交通大学学报, 2024, 58(3): 295-303. |
[15] | 黄权印, 蔡益朝, 李浩, 唐晓, 王辰洋. 基于改进注意力机制的自适应航迹预测方法[J]. 空天防御, 2024, 7(3): 94-101. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||