J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (5): 866-879.doi: 10.1007/s12204-023-2680-1
收稿日期:
2023-06-29
接受日期:
2023-07-20
出版日期:
2025-09-26
发布日期:
2023-12-21
邵艳利1, 2,应勇1,陈玺1,董思宇1,魏丹1
Received:
2023-06-29
Accepted:
2023-07-20
Online:
2025-09-26
Published:
2023-12-21
摘要: 针对烟雾在不同场景下形状多变、半透明烟雾难以定位检测以及烟雾尺度多变等问题,本研究提出一种基于多特征提取方法的多场景烟雾检测算法。首先,将YOLOv5s骨干网络中特征提取的卷积模块替换为不对称卷积块(ACB)重参数卷积,提高了对不同形状烟雾的检测效果。接着,通过在骨干网络深层引入坐标注意力(CA)机制机制以进一步提高对半透明烟雾的定位能力。最后,使用特征金字塔卷积模块代替模型中特征金字塔的标准卷积模块进一步提高了模型对不同尺度烟雾的检测能力。实验结果证明本文所提出模型在多场景烟雾检测上的可行性和优越性。
中图分类号:
. 基于多特征提取方法的多场景烟雾检测[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 866-879.
SHAO Yanli, YING Yong, CHEN Xi, DONG Siyu, WEI Dan. Multi-Scene Smoke Detection Based on Multi-Feature Extraction Method[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 866-879.
[1] JIANG T Y, LI C, YANG M, et al. An improved YOLOv5s algorithm for object detection with an attention mechanism [J]. Electronics, 2022, 11(16): 2494. [2] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580-587. [3] DING H D, LIU S Y, XU Y K, et al. Novel video smoke observation and detection method based on the motion track block [J]. Journal of Safety and Environment, 2016, 16(4): 96-100 (in Chinese). [4] YE S P, BAI Z C, CHEN H F, et al. An effective algorithm to detect both smoke and flame using color and wavelet analysis [J]. Pattern Recognition and Image Analysis, 2017, 27(1): 131-138. [5] ZHAO L, LUO Y M, LUO X Y. Based on dynamic background update and dark channel prior of fire smoke detection algorithm [J]. Application Research of Computers, 2017, 34(3): 957-960 (in Chinese). [6] WANG S D, HE Y P, YANG H Y, et al. Video smoke detection using shape, colorand dynamic features [J]. Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology, 2017, 33(1): 305-313. [7] ALAMGIR N, NGUYEN K, CHANDRAN V, et al. Combining multi-channel color space with local binary co-occurrence feature descriptors for accurate smoke detection from surveillance videos [J]. Fire Safety Journal, 2018, 102: 1-10. [8] LUO Y M, ZHAO L, LIU P Z, et al. Fire smoke detection algorithm based on motion characteristic and convolutional neural networks [J]. Multimedia Tools and Applications, 2018, 77(12): 15075-15092. [9] LI T T, ZHAO E T, ZHANG J G, et al. Detection of wildfire smoke images based on a densely dilated convolutional network [J]. Electronics, 2019, 8(10): 1131. [10] XU G, ZHANG Y M, ZHANG Q X, et al. Video smoke detection based on deep saliency network [J]. Fire Safety Journal, 2019, 105: 277-285. [11] MUHAMMAD K, KHAN S, PALADE V, et al. Edge intelligence-assisted smoke detection in foggy surveillance environments [J]. IEEE Transactions on Industrial Informatics, 2020, 16(2): 1067-1075. [12] LI C H, YANG B, DING H, et al. Real-time videobased smoke detection with high accuracy and efficiency [J]. Fire Safety Journal, 2020, 117: 103184. [13] HE L J, GONG X L, ZHANG S R, et al. Efficient attention based deep fusion CNN for smoke detection in fog environment [J]. Neurocomputing, 2021, 434: 224- 238. [14] ZHANG F, QIN W, LIU Y B, et al. A dual-channel convolution neural network for image smoke detection [J]. Multimedia Tools and Applications, 2020, 79(45/46): 34587-34603. [15] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768. [16] DING X H, GUO Y C, DING G G, et al. ACNet: Strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 1911-1920. [17] RAMACHANDRAN P, ZOPH B, LE Q V. Searching for activation functions [DB/OL]. (2017-10-16) [2023- 06-29]. https://arxiv.org/abs/1710.05941 [18] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks [M]//Computer vision–ECCV 2014. Cham: Springer International Publishing, 2014: 818-833. [19] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13708-13717. [20] DUTA I C, LIU L, ZHU F, et al. Pyramidal convolution: Rethinking convolutional neural networks for visual recognition [DB/OL]. (2020-06-20) [2023-06-29]. https://arxiv.org/abs/2006.11538 [21] REN S Q, HE K M, GIRSHICK R, et al. Faster RCNN: Towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137- 1149. [22] LIUW, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector [M]//Computer vision–ECCV 2016. Cham: Springer International Publishing, 2016: 21-37. [23] GE Z, LIU S T, WANG F, et al. YOLOX: Exceeding YOLO series in 2021 [DB/OL]. (2021-07-18) [2023-06- 29]. https://arxiv.org/abs/2107.08430 [24] SHI H. Research on field fire smoke detection method based on deep neural network [D]. Hangzhou: Hangzhou Dianzi University, 2021 (in Chinese). [25] JADON A, OMAMA M, VARSHNEY A, et al. FireNet: A specialized lightweight fire & smoke detection model for real-time IoT applications [DB/OL]. (2019-05-28) [2023-06-29]. https://arxiv.org/abs/1905.11922 [26] ZHENG Y P, XU B Y, WANG Z Y. Improved YOLOv5 smoke detection model [J]. Computer Engineering and Applications, 2023, 59(7): 214-221 (in Chinese). |
[1] | 朱峰, 单超, 吴宁, 蔡奇新, 祝宇楠, 刘云鹏, 左强. 电力市场环境下电力用户电价特征提取和异常识别方法[J]. 上海交通大学学报, 2025, 59(7): 995-1006. |
[2] | . 基于多注意力机制的轻量化人体姿态估计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 899-910. |
[3] | 包家汉, 孙德尚, 黄建中, 胡政. 基于自适应阈值的型钢精确角点FAST检测算法[J]. 上海交通大学学报, 2025, 59(5): 691-702. |
[4] | . 基于ALBERT的中国诗酒文化命名实体识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1065-1072. |
[5] | . CenterLineFormer:基于单车载相机的车道中心线生成方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1009-1017. |
[6] | . 迁移学习和注意机制融合用于CT图像COVID-19病灶分割的计算机辅助诊断[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 566-581. |
[7] | . 用于内窥镜图像息肉检测的实时轻量级卷积神经网络[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 521-534. |
[8] | 王可, 刘奕阳, 杨杰, 鲁爱国, 李哲, 徐明亮. 基于自适应特征增强和融合的舰载机着舰拉制状态识别[J]. 上海交通大学学报, 2025, 59(2): 274-282. |
[9] | 李楚晨, 唐善军, 赵冰青. 一种基于无人机探测图像区块信息的弱小目标检测算法[J]. 空天防御, 2025, 8(1): 41-47. |
[10] | 丁黎辉1, 2, 付立军1, 3, 杨光4, 5, 6, 万林4, 5, 常志军7. 基于视频的婴儿癫痫性痉挛综合征检测:建模、检测与评估[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 1-9. |
[11] | 徐旺旺1,2,许良凤1,2,刘宁徽3,律娜3. 基于多注意力卷积神经网络的乳腺癌组织学图像诊断[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 91-106. |
[12] | 周成, 蒋祖华. 融入优质主题和注意力机制的设计规范命名实体识别方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1169-1180. |
[13] | 彭诗玮1, 张希1, 朱旺旺1, 窦瑞2. 融合乘客感受量化指标的智能汽车舒适性研究[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1063-1070. |
[14] | 李利娟, 刘海, 刘红良, 张青松, 陈永东. 融合外部注意力机制的序列到点非侵入式负荷分解[J]. 上海交通大学学报, 2024, 58(6): 846-854. |
[15] | 李翠明, 王华, 徐龙儿, 王龙. 基于改进DeepLabv3+的光伏电站道路识别方法[J]. 上海交通大学学报, 2024, 58(5): 776-782. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||