J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (5): 866-879.doi: 10.1007/s12204-023-2680-1

• • 上一篇    下一篇

基于多特征提取方法的多场景烟雾检测

  

  1. 1. 杭州电子科技大学 计算机学院,杭州310018;2. 深空探测实验室,北京100080
  • 收稿日期:2023-06-29 接受日期:2023-07-20 出版日期:2025-09-26 发布日期:2023-12-21

Multi-Scene Smoke Detection Based on Multi-Feature Extraction Method

邵艳利1, 2,应勇1,陈玺1,董思宇1,魏丹1   

  1. 1. School of Computer Science, Hangzhou Dianzi University, Hangzhou 310018, China; 2. Deep Space Exploration Lab, Beijing 100080, China
  • Received:2023-06-29 Accepted:2023-07-20 Online:2025-09-26 Published:2023-12-21

摘要: 针对烟雾在不同场景下形状多变、半透明烟雾难以定位检测以及烟雾尺度多变等问题,本研究提出一种基于多特征提取方法的多场景烟雾检测算法。首先,将YOLOv5s骨干网络中特征提取的卷积模块替换为不对称卷积块(ACB)重参数卷积,提高了对不同形状烟雾的检测效果。接着,通过在骨干网络深层引入坐标注意力(CA)机制机制以进一步提高对半透明烟雾的定位能力。最后,使用特征金字塔卷积模块代替模型中特征金字塔的标准卷积模块进一步提高了模型对不同尺度烟雾的检测能力。实验结果证明本文所提出模型在多场景烟雾检测上的可行性和优越性。

关键词: 烟雾检测, YOLOv5, 特征提取, 注意力机制

Abstract: This study proposes a multi-scene smoke detection algorithm based on a multi-feature extraction method to address the problems of varying smoke shapes in different scenes, difficulty in locating and detecting translucent smoke, and variable smoke scales. First, the convolution module of feature extraction in YOLOv5s backbone network is replaced with asymmetric convolution block re-parameterization convolution to improve the detection of different shapes of smoke. Then, coordinate attention mechanism is introduced in the deeper layer of the backbone network to further improve the localization of translucent smoke. Finally, the detection of smoke at different scales is further improved by using the feature pyramid convolution module instead of the standard convolution module of the feature pyramid in the model. The experimental results demonstrate the feasibility and superiority of the proposed model for multi-scene smoke detection.

中图分类号: