J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (6): 1073-1084.doi: 10.1007/s12204-023-2645-4

• • 上一篇    下一篇

基于三维卷积特征金字塔网络的高光谱卫星图像分类

  

  1. 上海交通大学 仪器科学与工程系,上海200240
  • 收稿日期:2022-10-11 接受日期:2022-12-23 出版日期:2025-11-21 发布日期:2025-11-26

Hyperspectral Satellite Image Classification Based on Feature Pyramid Networks With 3D Convolution

陈铖,彭攀,陶卫,赵辉   

  1. Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2022-10-11 Accepted:2022-12-23 Online:2025-11-21 Published:2025-11-26

摘要: 近年来,卷积神经网络的最新进展促进了物体识别和语义分割领域的进步,进而提高了高光谱图像分类的性能。然而,高维度的特征提取和训练样本的不足严重阻碍了高光谱图像分类的未来发展。在本文中,我们提出了一种基于三维卷积和特征金字塔网络的新算法3D-FPN,用于高光谱图像分类。该框架包含主成分分析、特征提取结构和逻辑回归三部分。首先利用三维卷积构建的特征金字塔结构不仅充分保留了三维卷积提取光谱-空间特征图的优势,而且更关注细节信息,最后进行多尺度的特征融合。该方法避免了模型的过度复杂,能适用于具有不同类别和不同空间分辨率的小样本高光谱分类。为了测试我们提出的3D-FPN的性能,我们对三个公共高光谱数据集和高分五号卫星的高光谱数据进行了严格的实验分析。定量和定性结果表明,我们提出的方法在与其他最先进的端到端深度学习方法比较中展现了最佳性能。

关键词: 高光谱图像, 深度学习, 特征金字塔网络, 光谱-空间特征提取

Abstract: Recent advances in convolution neural network (CNN) have fostered the progress in object recognition and semantic segmentation, which in turn has improved the performance of hyperspectral image (HSI) classification. Nevertheless, the difficulty of high dimensional feature extraction and the shortage of small training samples seriously hinder the future development of HSI classification. In this paper, we propose a novel algorithm for HSI classification based on three-dimensional (3D) CNN and a feature pyramid network (FPN), called 3D-FPN. The framework contains a principle component analysis, a feature extraction structure and a logistic regression. Specifically, the FPN built with 3D convolutions not only retains the advantages of 3D convolution to fully extract the spectral-spatial feature maps, but also concentrates on more detailed information and performs multi-scale feature fusion. This method avoids the excessive complexity of the model and is suitable for small sample hyperspectral classification with varying categories and spatial resolutions. In order to test the performance of our proposed 3D-FPN method, rigorous experimental analysis was performed on three public hyperspectral data sets and hyperspectral data of GF-5 satellite. Quantitative and qualitative results indicated that our proposed method attained the best performance among other current state-of-the-art end-to-end deep learning-based methods.

中图分类号: