J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (3): 528-536.doi: 10.1007/s12204-022-2504-8
宋立博a,费燕琼b
收稿日期:
2021-07-06
接受日期:
2021-07-20
出版日期:
2024-05-28
发布日期:
2024-05-28
SONG Liboa (宋立博), FEI Yanqiongb (费燕琼)
Received:
2021-07-06
Accepted:
2021-07-20
Online:
2024-05-28
Published:
2024-05-28
摘要: 为了顺应高层建筑裂缝检测市场需求的快速增长,本文提出了将深度网络技术集成到爬墙机器人中进行裂缝检测的想法。考虑到在树莓派Raspberry Pi等边缘设备上部署时的依赖性和硬件要求,选择了Darknet神经网络作为检测的基本框架。为了提高在边缘设备上的推理效率并避免深度网络可能出现的过早过拟合,对原始的YOLOv4-Tiny算法进行了改进,得到了Lite YOLOv4-Tiny算法,并使用Netron对其结构进行了相应的可视化。处理了从互联网上下载以及从校园建筑物拍摄的图像,形成了裂缝检测数据集,并使用AlexeyAB版本的Darknet在个人计算机上进行训练,生成权重文件。同时,将NNpack包加速的AlexeyAB版本Darknet部署在Raspberry Pi 4B上,并进行了裂缝检测实验。通过与原始YOLOv4-Tiny算法的比较,证实了Lite YOLOv4-Tiny算法具有速度快、误检率低等特点。创新点主要集中在网络结构简单、网络层数少以及特征前向传输早,从而防止过拟合。实验结果表明,新的Lite神经网络在性能上显著优于原始YOLOv4-Tiny网络。这一研究成果对于提高高层建筑裂缝检测的效率和准确性具有重要意义,有望推动智能爬墙机器人在建筑维护领域的广泛应用。
中图分类号:
宋立博a,费燕琼b. 新型Lite YOLOv4-Tiny算法及其在裂纹智能检测中的应用[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 528-536.
SONG Liboa (宋立博), FEI Yanqiongb (费燕琼). New Lite YOLOv4-Tiny Algorithm and Application on Crack Intelligent Detection[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 528-536.
[1] TANG D L, LONG Z Y, TANG Y J, et al. Complete coverage path planning of oil tank detection wall climbing robot [J]. Chinese Journal of Engineering Design, 2020, 27(2): 162-171 (in Chinese). [2] YANG Z L, WAN Y, WANG Y, et al. Analysis of safety and stability of wall-climbing robot [J]. Science Technology and Engineering, 2020, 20(15): 6113-6121 (in Chinese). [3] SHU J J, WANG Q, HE Y Y, et al. Design of weld identification and inspection wall-climbing robot for large spherical tank container [J]. Hot Working Technology, 2020, 49(11): 127-131 (in Chinese). [4] XIAO R H, CHENG Y X, JIANG Z Z, et al. Design of adsorption mechanism for rust-removing wall-climbing robot on the oil tank’s inner wall [J]. Journal of Machine Design, 2019, 36(7): 21-26 (in Chinese). [5] LYU Z, ZHANG C, ZHONG G, et al. Kinematics analysis and simulation of a quadruped magnetic adsorption wall-climbing robot [J]. Advanced Engineering Sciences, 2020, 52(2): 121-129 (in Chinese). [6] WANG W, GAO C, ZHANG X, et al. Analysis and simulation of permanent magnet adsorption characteristics of lightweight wall-climbing robot [J]. Manufacturing Automation, 2020, 42(12): 23-27 (in Chinese). [7] LIU Y W, WANG L M, LIU S W, et al. Design and analysis of an inchworm-inspired wall-climbing robot [J]. Journal of Mechanical Transmission, 2019, 43(8): 87-91 (in Chinese). [8] ZHUANG Y, TENG H, XU T, et al. Obstacle avoidance control of wall-climbing robot based on degraded fuzzy algorithms [J]. Science Technology and Engineering, 2020, 20(19): 7729-7736 (in Chinese). [9] LU J, ZHU H, LIANG J, et al. Global path planning for a biped wall-climbing robot in 3D wall environment [J]. Journal of Harbin Institute of Technology, 2020, 52(1): 148-155 (in Chinese). [10] TENG H, ZHUANG Y, DENG S, et al. Doubleloop trajectory tracking control of wall-climbing robot based on global stability [J]. Computer Engineering and Design, 2020, 41(9): 2636-2642 (in Chinese). [11] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788. [12] SUN X, HAO H, LIU Y, et al. Application of YOLOv4 in power inspection target detection [J]. Modern Information Technology, 2020, 4(20): 115-117 (in Chinese). [13] TANG X, HUANG J, FENG J, et al. Image segmentation and defect detection of insulators based on U-net and YOLOv4 [J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 15-21 (in Chinese). [14] DU X, CHEN D, LIU H, et al. Real-time hand tracking based on YOLOv4 model and Kalman filter [J]. The Journal of China Universities of Posts and Telecommunications, 2021, 28(3): 86-94. [15] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection [DB/OL]. (2020-04-23). https://arxiv.org/abs/2004.10934. [16] LI B, WANG C, WU J, et al. Surface defect detection of aeroengine components based on improved YOLOv4 algorithm [J]. Laser & Optoelectronics Progress, 2021, 58(14): 406-415 (in Chinese). [17] XIE Y, ZHANG P. Small target detection of transmission line based on improved YOLOv4 [J]. Foreign Electronic Measurement Technology, 2021, 40(2): 47-51 (in Chinese). [18] CAI S, SUN Z, LIU H, et al. Real-time detection methodology for obstacles in orchards using improved YOLOv4 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(2): 36-43 (in Chinese). [19] ZHANG K, LUO X, SUN Z, et al. Generator stator surface defect detection algorithm based on lightweight YOLOv4 [J]. Computer and Digital Engineering, 2021, 49(4): 686-691 (in Chinese). [20] WANG B, LE H, LI W, et al. Mask detection algorithm based on improved YOLO lightweight network [J]. Computer Engineering and Applications, 2021, 57(8): 62-69 (in Chinese). [21] CAO Y, GAO Y. Lightweight beverage recognition network based on Ghostnet residual structure [J]. Computer Engineering, 2022, 48(3): 310-314 (in Chinese). |
[1] | . 血管介入手术路径规划及三维视觉导航[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 472-481. |
[2] | . 基于改进FCOS算法的钢丝绳芯输送带损伤X射线图像检测[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 309-318. |
[3] | . 基于双流自编码器的无监督动作识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 330-336. |
[4] | . 基于空间特征学习与多粒度特征融合的行人重识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 363-374. |
[5] | 周苏, 钟泽滨. 基于车载智能手机的实时车辆及行人测距[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1081-1090. |
[6] | 鄢丛强1,2, 郭正玉3,4, 蔡云泽 1,2. 基于改进CycleGAN的SAR图像舰船尾迹数据增强[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 702-711. |
[7] | LONARE Savita1,2, BHRAMARAMBA Ravi2. 基于图卷积网络的联邦式隐私保护交通预测方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 509-517. |
[8] | 吕峰,王新彦,李磊,江泉,易政洋. 基于嵌入式YOLO轻量级网络的树木检测算法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 518-527. |
[9] | 沈傲1, 2,胡冀苏2, 3,金鹏飞4,周志勇2,钱旭升2, 3,郑毅2,包婕4,王希明4,戴亚康1, 2. 基于课程学习训练的聚合注意力网络Multi-SEANet用于MRI图像的格里森级别组无创预测[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 109-119. |
[10] | 薛永波a,刘 钊b,李泽阳a,朱 平a. 基于改进分水岭算法和U-net神经网络模型的复合材料CT图像分割方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 783-792. |
[11] | . 基于锥型体素建模和单目相机的鸟瞰图语义分割和体素语义分割[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 100-113. |
[12] | . 行人轨迹预测的动作感知编码器–解码器网络[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 20-27. |
[13] | SONG Hao-hao (宋好好), LU Zhen (陆 臻). Image Fusion Scheme Based on Nonsubsampled Contourlet and Block-Based Cosine Transform[J]. J Shanghai Jiaotong Univ Sci, 2012, 17(1): 8-012. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 43
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 308
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||