J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (3): 537-556.doi: 10.1007/s12204-022-2474-x
顾星海,花 豹,刘亚辉,孙学民,鲍劲松
收稿日期:
2021-08-06
接受日期:
2021-11-08
出版日期:
2024-05-28
发布日期:
2024-05-28
GU Xinghai顾星海),HUA Bao(花 豹),LIU Yahui(刘亚辉),SUN Xuemin(孙学民),BAO Jinsong∗(鲍劲松)
Received:
2021-08-06
Accepted:
2021-11-08
Online:
2024-05-28
Published:
2024-05-28
摘要: 装配工艺文档记录了工艺设计者的意图或知识。然而,由于其表格形式和非结构化的自然语言文本,普通知识抽取方法不适合于处理装配工艺文档。本文提出了一种面向装配工艺文档的装配语义实体识别与关系构建方法。首先,通过有效区域识别和单元格划分,从表格中提取装配工艺语句,并将其存储为键-值对象文件。然后,面向装配操作类型,通过基于注意力机制的序列标注模型识别语句中的语义实体,并设计句法规则实现实体间关系的自动构建。最后,通过使用自建的语料库,证明了该方法提出的序列标注模型在处理装配工艺设计语言时比主流的命名实体识别模型表现更好。并且,通过小规模真实场景下的仿真实验与人工方法进行比较,证明了该方法的有效性。结果表明,该方法可以帮助设计者自动、有效地积累知识。
中图分类号:
顾星海,花 豹,刘亚辉,孙学民,鲍劲松. 面向装配工艺文档的装配语义实体识别与关系构建方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 537-556.
GU Xinghai顾星海),HUA Bao(花 豹),LIU Yahui(刘亚辉),SUN Xuemin(孙学民),BAO Jinsong∗(鲍劲松). Semantic Entity Recognition and Relation Construction Method for Assembly Process Document[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 537-556.
[1] CHEN J H, JIA X L. An approach for assembly process case discovery using multimedia information source [J]. Computers in Industry, 2020, 115: 103176. [2] ZHANG S Y, GE W Q, WANG Z L, et al. A heuristic configuration solving process planning method for mechanical product configuration by imitating the crystal crystallization process [J]. The International Journal of Advanced Manufacturing Technology, 2021, 116(1/2): 611-628. [3] KRETSCHMER R, PFOUGA A, RULHOFF S, et al. Knowledge-based design for assembly in agile manufacturing by using Data Mining methods [J]. Advanced Engineering Informatics, 2017, 33: 285-299. [4] KUTIN A, DOLGOV V, SEDYKH M, et al. Integration of different computer-aided systems in product designing and process planning on digital manufacturing [J]. Procedia CIRP, 2018, 67: 476-481. [5] OTTER D W, MEDINA J R, KALITA J K. A survey of the usages of deep learning for natural language processing [J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(2): 604-624. [6] JI S X, PAN S R, CAMBRIA E, et al. A survey on knowledge graphs: Representation, acquisition, and applications [J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2): 494-514. [7] ZHAO M X, WANG H, GUO J, et al. Construction of an industrial knowledge graph for unstructured Chinese text learning [J]. Applied Sciences, 2019, 9(13): 2720. [8] CHEN Z Y, BAO J S, ZHENG X H, et al. Semantic recognition method of assembly process based on LSTM [J]. Computer Integrated Manufacturing Systems, 2021(6): 1582-1593 (in Chinese). [9] LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition [C]//2016 Conference of the North American Chapter of the Association for Computational Linguistics. San Diego, CA: ACL, 2016: 260-270. [10] DEVLIN J, CHANG M W, LEE K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding [DB/OL]. (2019-05-24). https://arxiv.org/abs/1810.04805. [11] DAI Z J, WANG X T, NI P, et al. Named entity recognition using BERT BiLSTM CRF for Chinese electronic health records [C]//2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. Suzhou: IEEE, 2019: 1-5. [12] JIA C, SHI Y F, YANG Q R, et al. Entity enhanced BERT pre-training for Chinese NER [C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2020: 6384-6396. [13] SYED M H, CHUNG S T. MenuNER: domain-adapted BERT based NER approach for a domain with limited dataset and its application to food menu domain [J]. Applied Sciences, 2021, 11(13): 6007. [14] ZHANG J Y, HE G H, DAI Z, et al. Named entity recognition of enterprise annual report integrated with BERT [J]. Journal of Shanghai Jiao Tong University, 2021, 55(2): 117-123 (in Chinese). [15] CHEN L, XU S, ZHU L J, et al. A deep learning based method for extracting semantic information from patent documents [J]. Scientometrics, 2020,125(1): 289-312. [16] GIORGI J, WANG X D, SAHAR N, et al. End-toend named entity recognition and relation extraction using pre-trained language models [DB/OL]. (2019-12-20). https://arxiv.org/abs/1912.13415. [17] ZHENG S C, WANG F, BAO H Y, et al. Joint extraction of entities and relations based on a novel tagging scheme [C]//55th Annual Meeting of the Association for Computational Linguistics. Vancouver: ACL, 2017: 1227-1236. [18] WEI Z P, SU J L, WANG Y, et al. A novel cascade binary tagging framework for relational triple extraction [C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2020: 1476-1488. [19] LI J, SUN A X, HAN J L, et al. A survey on deep learning for named entity recognition [J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(1): 50-70. [20] ZHANG N N, WANG P Y, ZHANG G P. Named entity deep learning recognition method for process operation description text [J]. Computer Applications and Software, 2019, 36(11): 188-195 (in Chinese). [21] IMPEDOVO S, OTTAVIANO L, OCCHINEGRO S. Optical character recognition — a survey [J]. International Journal of Pattern Recognition and Artificial Intelligence, 1991, 5(1n02): 1-24. [22] BOUKHAROUBA A. A new algorithm for skew correction and baseline detection based on the randomized Hough Transform [J]. Journal of King Saud University-Computer and Information Sciences, 2017, 29(1): 29-38. |
[1] | 陈旖旎,蒋祖华. 船舶舾装件立体仓储考虑车辆冲突的多AGV任务调度策略研究[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 492-508. |
[2] | LONARE Savita1,2, BHRAMARAMBA Ravi2. 基于图卷积网络的联邦式隐私保护交通预测方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 509-517. |
[3] | 吕峰,王新彦,李磊,江泉,易政洋. 基于嵌入式YOLO轻量级网络的树木检测算法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 518-527. |
[4] | 宋立博a,费燕琼b. 新型Lite YOLOv4-Tiny算法及其在裂纹智能检测中的应用[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 528-536. |
[5] | 张静克1,何新林2,戚宗锋1,马 超2,李建勋2. 不平衡图多尺度融合节点分类方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 557-565. |
[6] | 陈利跃1,洪道鉴2,何星3,卢东祁2,张乾2,谢妮娜2,徐一洲2,应煌浩2. 基于图卷积网络的分布式光伏实时输出估计方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 290-296. |
[7] | 黄荣,常青,张扬. 无监督口腔内窥镜图像拼接算法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 81-90. |
[8] | 沈傲1, 2,胡冀苏2, 3,金鹏飞4,周志勇2,钱旭升2, 3,郑毅2,包婕4,王希明4,戴亚康1, 2. 基于课程学习训练的聚合注意力网络Multi-SEANet用于MRI图像的格里森级别组无创预测[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 109-119. |
[9] | 田圆圆,金衍瑞,李志远,刘金磊,刘成良. 基于加权异构图谱的增量式疾病自动诊断方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 120-130. |
[10] | 薛永波a,刘 钊b,李泽阳a,朱 平a. 基于改进分水岭算法和U-net神经网络模型的复合材料CT图像分割方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 783-792. |
[11] | 侯舒娟,朱文萍,李海. 混合失真图像恢复的分阶段训练[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 793-801. |
[12] | 朱昶胜1,康亮河1,3,冯文芳2. 基于AdaBoost-AAFSA-Elman模型及CEEMDAN算法的股市网络舆情收盘价预测[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 809-821. |
[13] | 谢晨昊, 梁家卿, 肖仰华, HWANG Seung-won. 概念化的实体关系解释[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 695-702. |
[14] | . 行人轨迹预测的动作感知编码器–解码器网络[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 20-27. |
[15] | . 基于场端RGB-D相机阵列的室内停车场车辆定位系统[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 61-69. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||