J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (3): 537-556.doi: 10.1007/s12204-022-2474-x
顾星海,花 豹,刘亚辉,孙学民,鲍劲松
收稿日期:
2021-08-06
接受日期:
2021-11-08
出版日期:
2024-05-28
发布日期:
2024-05-28
GU Xinghai顾星海),HUA Bao(花 豹),LIU Yahui(刘亚辉),SUN Xuemin(孙学民),BAO Jinsong∗(鲍劲松)
Received:
2021-08-06
Accepted:
2021-11-08
Online:
2024-05-28
Published:
2024-05-28
摘要: 装配工艺文档记录了工艺设计者的意图或知识。然而,由于其表格形式和非结构化的自然语言文本,普通知识抽取方法不适合于处理装配工艺文档。本文提出了一种面向装配工艺文档的装配语义实体识别与关系构建方法。首先,通过有效区域识别和单元格划分,从表格中提取装配工艺语句,并将其存储为键-值对象文件。然后,面向装配操作类型,通过基于注意力机制的序列标注模型识别语句中的语义实体,并设计句法规则实现实体间关系的自动构建。最后,通过使用自建的语料库,证明了该方法提出的序列标注模型在处理装配工艺设计语言时比主流的命名实体识别模型表现更好。并且,通过小规模真实场景下的仿真实验与人工方法进行比较,证明了该方法的有效性。结果表明,该方法可以帮助设计者自动、有效地积累知识。
中图分类号:
顾星海,花 豹,刘亚辉,孙学民,鲍劲松. 面向装配工艺文档的装配语义实体识别与关系构建方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 537-556.
GU Xinghai顾星海),HUA Bao(花 豹),LIU Yahui(刘亚辉),SUN Xuemin(孙学民),BAO Jinsong∗(鲍劲松). Semantic Entity Recognition and Relation Construction Method for Assembly Process Document[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 537-556.
[1] CHEN J H, JIA X L. An approach for assembly process case discovery using multimedia information source [J]. Computers in Industry, 2020, 115: 103176. [2] ZHANG S Y, GE W Q, WANG Z L, et al. A heuristic configuration solving process planning method for mechanical product configuration by imitating the crystal crystallization process [J]. The International Journal of Advanced Manufacturing Technology, 2021, 116(1/2): 611-628. [3] KRETSCHMER R, PFOUGA A, RULHOFF S, et al. Knowledge-based design for assembly in agile manufacturing by using Data Mining methods [J]. Advanced Engineering Informatics, 2017, 33: 285-299. [4] KUTIN A, DOLGOV V, SEDYKH M, et al. Integration of different computer-aided systems in product designing and process planning on digital manufacturing [J]. Procedia CIRP, 2018, 67: 476-481. [5] OTTER D W, MEDINA J R, KALITA J K. A survey of the usages of deep learning for natural language processing [J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(2): 604-624. [6] JI S X, PAN S R, CAMBRIA E, et al. A survey on knowledge graphs: Representation, acquisition, and applications [J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2): 494-514. [7] ZHAO M X, WANG H, GUO J, et al. Construction of an industrial knowledge graph for unstructured Chinese text learning [J]. Applied Sciences, 2019, 9(13): 2720. [8] CHEN Z Y, BAO J S, ZHENG X H, et al. Semantic recognition method of assembly process based on LSTM [J]. Computer Integrated Manufacturing Systems, 2021(6): 1582-1593 (in Chinese). [9] LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition [C]//2016 Conference of the North American Chapter of the Association for Computational Linguistics. San Diego, CA: ACL, 2016: 260-270. [10] DEVLIN J, CHANG M W, LEE K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding [DB/OL]. (2019-05-24). https://arxiv.org/abs/1810.04805. [11] DAI Z J, WANG X T, NI P, et al. Named entity recognition using BERT BiLSTM CRF for Chinese electronic health records [C]//2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. Suzhou: IEEE, 2019: 1-5. [12] JIA C, SHI Y F, YANG Q R, et al. Entity enhanced BERT pre-training for Chinese NER [C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2020: 6384-6396. [13] SYED M H, CHUNG S T. MenuNER: domain-adapted BERT based NER approach for a domain with limited dataset and its application to food menu domain [J]. Applied Sciences, 2021, 11(13): 6007. [14] ZHANG J Y, HE G H, DAI Z, et al. Named entity recognition of enterprise annual report integrated with BERT [J]. Journal of Shanghai Jiao Tong University, 2021, 55(2): 117-123 (in Chinese). [15] CHEN L, XU S, ZHU L J, et al. A deep learning based method for extracting semantic information from patent documents [J]. Scientometrics, 2020,125(1): 289-312. [16] GIORGI J, WANG X D, SAHAR N, et al. End-toend named entity recognition and relation extraction using pre-trained language models [DB/OL]. (2019-12-20). https://arxiv.org/abs/1912.13415. [17] ZHENG S C, WANG F, BAO H Y, et al. Joint extraction of entities and relations based on a novel tagging scheme [C]//55th Annual Meeting of the Association for Computational Linguistics. Vancouver: ACL, 2017: 1227-1236. [18] WEI Z P, SU J L, WANG Y, et al. A novel cascade binary tagging framework for relational triple extraction [C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2020: 1476-1488. [19] LI J, SUN A X, HAN J L, et al. A survey on deep learning for named entity recognition [J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(1): 50-70. [20] ZHANG N N, WANG P Y, ZHANG G P. Named entity deep learning recognition method for process operation description text [J]. Computer Applications and Software, 2019, 36(11): 188-195 (in Chinese). [21] IMPEDOVO S, OTTAVIANO L, OCCHINEGRO S. Optical character recognition — a survey [J]. International Journal of Pattern Recognition and Artificial Intelligence, 1991, 5(1n02): 1-24. [22] BOUKHAROUBA A. A new algorithm for skew correction and baseline detection based on the randomized Hough Transform [J]. Journal of King Saud University-Computer and Information Sciences, 2017, 29(1): 29-38. |
[1] | . 血管介入手术路径规划及三维视觉导航[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 472-481. |
[2] | . 基于毫米波雷达的智能心率提取方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 493-498. |
[3] | . 基于变换学习和结构化低秩模型的并行成像快速重构算法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 499-509. |
[4] | . 用于内窥镜图像息肉检测的实时轻量级卷积神经网络[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 521-534. |
[5] | . 基于改进加权融合的胶囊内镜肠道内壁图像拼接方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 535-544. |
[6] | . 基于外积有效和字典学习的改进灵敏度编码重建算法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 555-565. |
[7] | . 迁移学习和注意机制融合用于CT图像COVID-19病灶分割的计算机辅助诊断[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 566-581. |
[8] | . 基于蝶形空洞几何蒸馏的磁共振成像重建[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 591-599. |
[9] | . 基于改进差分进化极限学习机的锂离子电池健康状态估计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 252-261. |
[10] | . 基于改进FCOS算法的钢丝绳芯输送带损伤X射线图像检测[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 309-318. |
[11] | . 基于双流自编码器的无监督动作识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 330-336. |
[12] | . 基于空间特征学习与多粒度特征融合的行人重识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 363-374. |
[13] | 丁黎辉1, 2, 付立军1, 3, 杨光4, 5, 6, 万林4, 5, 常志军7. 基于视频的婴儿癫痫性痉挛综合征检测:建模、检测与评估[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 1-9. |
[14] | 孔会扬1, 王殊轶1, 张璨2, 陈赞2, 3. 手术导板辅助增强现实技术与传统技术在椎弓根螺钉放置中的比较[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 10-17. |
[15] | 赵艳飞1,2,3, 肖鹏4, 王景川1,2,3, 郭锐4. 基于局部语义地图的移动机器人半自主导航[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 27-33. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 26
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 217
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||