J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (3): 493-498.doi: 10.1007/s12204-023-2656-1
收稿日期:
2022-10-10
接受日期:
2022-11-10
出版日期:
2025-06-06
发布日期:
2025-06-06
冯灵冬,苗玉彬
Received:
2022-10-10
Accepted:
2022-11-10
Online:
2025-06-06
Published:
2025-06-06
摘要: 毫米波雷达的非接触式生命体征测量技术具有重要医用价值与独特优势。然而由于心跳震动特征微弱,频率范围较广,且检测信号存在呼吸谐波及无关运动干扰等因素,进行实时鲁棒提取仍有难点。针对上述问题,将对于广范围分布的快慢心率自适应提取归纳为多尺度检测问题,将区分心跳特征与其他无关身体运动特征归纳为特征关注问题,进行了多尺度检测模块和心率特征关注模块设计,并组合为基本网络模块,搭建成心率提取神经网络。通过合理的数据集设计与模块参数设计进行实验,其结果表明,在有无关运动数据干扰的信号数据中,所提方法模型进行心率提取时的绝对误差平均可以达到1.87次/分,相对准确率平均可以达到97.51%。
中图分类号:
. 基于毫米波雷达的智能心率提取方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 493-498.
Feng Lingdong, Miao Yubin. Intelligent Heart Rate Extraction Method Based on Millimeter Wave Radar[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 493-498.
[1] HU W. Non-contact vital sign detection based on Doppler radar[D]. Hefei: University of Science and Technology of China, 2014 (in Chinese). [2] ZHAO H, HONG H, SUN L, et al. Noncontact physiological dynamics detection using low-power digital-IF Doppler radar [J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(7): 1780-1788. [3] LIU J, LIU H B, CHEN Y Y, et al. Wireless sensing for human activity: A survey [J]. IEEE Communications Surveys & Tutorials, 2020, 22(3): 1629-1645. [4] PARK J Y, LEE Y G, HEO R, et al. Preclinical evaluation of noncontact vital signs monitoring using real-time IR-UWB radar and factors affecting its accuracy [J]. Scientific Reports, 2021, 11: 23602. [5] IWATA Y, THANH H T, SUN G H, et al. High accuracy heartbeat detection from CW-Doppler radar using singular value decomposition and matched filter [J]. Sensors, 2021, 21(11): 3588. [6] LIU J T, LI Y C, LI C Z, et al. Accurate measurement of human vital signs with linear FMCW radars under proximity stationary clutters [J]. IEEE Transactions on Biomedical Circuits and Systems, 2021, 15(6): 1393-1404. [7] DAI T K V, OLEKSAK K, KVELASHVILI T, et al. Enhancement of remote vital sign monitoring detection accuracy using multiple-input multiple-output 77 GHz FMCW radar [J]. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2022, 6(1): 111-122. [8] SHEN H M, XU C, YANG Y J, et al. Respiration and heartbeat rates measurement based on autocorrelation using IR-UWB radar [J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(10): 1470-1474. [9] PENG K C, SUNG M C, WANG F K, et al. Non-contact vital sign detection using gain detection technique [C]//2021 IEEE International Symposium on Radio-Frequency Integration Technology. Hualien: IEEE, 2021: 1-2. [10] BAHMANI N, ROUVALA M, KAARNA A. Vital sign detection using short-range mm-wave pulsed radar [C]//2021 IEEE 3rd Global Conference on Life Sciences and Technologies. Nara: IEEE, 2021: 512-516. [11] LE M, VAN NGUYEN B. Multivariate correlation of higher harmonics for heart rate remote measurement using UWB impulse radar [J]. IEEE Sensors Journal, 2020, 20(4): 1859-1866. [12] SHIH J Y, WANG F K. Quadrature cosine transform (QCT) with varying window length (VWL) technique for noncontact vital sign monitoring using a continuous-wave (CW) radar [J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(3): 1639-1650. [13] XU H Q, EBRAHIM M P, HASAN K, et al. Accurate heart rate and respiration rate detection based on a higher-order harmonics peak selection method using radar non-contact sensors [J]. Sensors, 2021, 22(1): 83. [14] SHYU K K, CHIU L J, LEE P L, et al. Detection of breathing and heart rates in UWB radar sensor data using FVPIEF-based two-layer EEMD [J]. IEEE Sensors Journal, 2019, 19(2): 774-784. [15] HUANG T, HAYWARD L, LIN J. Adaptive harmonics comb Notch digital filter for measuring heart rate of laboratory rat using a 60-GHz radar [C]//2016 IEEE MTT-S International Microwave Symposium. San Francisco: IEEE, 2016: 1-4. [16] XIONG Y Y, PENG Z K, GU C Z, et al. Differential enhancement method for robust and accurate heart rate monitoring via microwave vital sign sensing [J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 7108-7118. [17] MUÑOZ-FERRERAS J M, PENG Z Y, GÓMEZ-GARCÍA R, et al. Random body movement mitigation for FMCW-radar-based vital-sign monitoring [C]//2016 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems. Austin: IEEE, 2016: 22-24. [18] RONG Y, DUTTA A, CHIRIYATH A, et al. Motion-tolerant non-contact heart-rate measurements from radar sensor fusion [J]. Sensors, 2021, 21(5): 1774. [19] YIN W F, YANG X Z, LI L, et al. HEAR: Approach for heartbeat monitoring with body movement compensation by IR-UWB radar [J]. Sensors, 2018, 18(9): 3077. [20] ZHAO P J, LU C X, WANG B, et al. Heart rate sensing with a robot mounted mmWave radar [C]//2020 IEEE International Conference on Robotics and Automation. Paris: IEEE, 2020: 2812-2818. [21] TSAI Y C, LAI S H, HO C J, et al. High accuracy respiration and heart rate detection based on artificial neural network regression [C]//2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Montreal: IEEE, 2020: 232-235. [22] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions [C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 1-9. [23] HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141. [24] SHI K, SCHELLENBERGER S, WILL C, et al. A dataset of radar-recorded heart sounds and vital signs including synchronised reference sensor signals [J]. Scientific Data, 2020, 7: 50. |
[1] | . 基于基尼不纯度结构优化物理引导神经网络的薄膜型声学超材料传声损失预测[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 613-624. |
[2] | . 基于表面肌电信号的BP-LSTM混合模型肘部运动实时预测[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 455-462. |
[3] | . 基于RGB-D图像的机器人抓取检测高效全卷积网络和优化方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 399-416. |
[4] | . 重复零和博弈中对无遗憾对手进行盘剥的研究[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 385-398. |
[5] | Sahaya Anselin Nisha1, NARMADHA R.1, AMIRTHALAKSHMI T. M.2, BALAMURUGAN V.1, VEDANARAYANAN V.1. LOBO优化的深度卷积神经网络用于脑肿瘤分类[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 107-114. |
[6] | 蒋伊琳1, 2, 李向1, 2, 张昊平3. 基于卷积神经网络和接收信号强度的波束状态感知方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1017-1022. |
[7] | 李明爱1, 2, 魏丽娜1. 基于朴素卷积神经网络和线性插值的运动想像分类[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 958-966. |
[8] | 徐良坤1, 2, 薛晗2, 金永兴1, 周世波2. 基于神经网络优化多元 KDE 带宽的浮标空间信息分析[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 773-779. |
[9] | 张啸天1,何德峰1,廖飞2. 复杂环境及约束下舰载机自动着舰迭代模型预测控制[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 712-724. |
[10] | 朱江辉1,2,3,4,叶航航5,姚莉秀1,2,3,蔡云泽1,2,3,4. 基于自组织映射网络解决旅行商问题的算法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 463-470. |
[11] | 朱昶胜,朱丽娜. 基于经验小波变换、循环神经网络和误差校正的短期风速预测[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 297-308. |
[12] | 陈潇1,2,张瑞1,2,汤心溢1,2,钱娟3. 交叉特征深度编码网络预测儿童脓毒症[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 131-140. |
[13] | 朱昶胜1,康亮河1,3,冯文芳2. 基于AdaBoost-AAFSA-Elman模型及CEEMDAN算法的股市网络舆情收盘价预测[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 809-821. |
[14] | 薛永波a,刘 钊b,李泽阳a,朱 平a. 基于改进分水岭算法和U-net神经网络模型的复合材料CT图像分割方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 783-792. |
[15] | 曹现刚1, 2,雷卓1,李彦川1,张梦园1,段欣宇1. 基于Self-Attention-LSTM神经网络的设备剩余寿命预测方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 652-664. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||