J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (3): 482-492.doi: 10.1007/s12204-023-2635-6
收稿日期:
2022-11-16
接受日期:
2023-03-02
出版日期:
2025-06-06
发布日期:
2025-06-06
李鹏举,富荣昌,杨骁峥,王昆
Received:
2022-11-16
Accepted:
2023-03-02
Online:
2025-06-06
Published:
2025-06-06
摘要: 目前侧后凸脊柱对振动的动态反应特征尚不清楚。用有限元法研究了特发性侧后凸脊柱患者的振动响应。目标是分析特发性侧后凸脊柱的动态特征。用CT扫描图像建立T1—S1段的有限元模型,并进行验证。对建立的脊柱侧后凸模型进行静力学和动态验证。利用有限元软件ABAQUS对脊柱侧后凸模型进行模态分析、稳态分析和瞬态分析。从模态分析中提取的前四阶固有频率分别为1.34、2.26、4.49和17.69 Hz。值得注意的是,前三个固有频率随着上半身体质量的增加而降低。在稳态分析中,x方向最大振幅对应的频率为一阶固有频率,y方向和z方向最大振幅对应的频率为二阶固有频率。在相同的共振频率下,胸椎的振幅相对于腰椎的振幅更大。瞬时分析的时域结果表明,各段的位移动态响应随时间呈现循环响应特性。在2.26 Hz的激励下,研究对象的动态响应表现为共振。脊柱畸形程度越高,基频越高。侧后凸脊柱的前三阶模态都包含了垂直方向上的振动分量。二阶固有频率对脊柱侧后凸患者的危害最大。在循环载荷作用下,胸锥的变形超过腰椎。
中图分类号:
. 特发性脊柱侧后凸的动态响应[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 482-492.
Li Pengju, Fu Rongchang, Yang Xiaozheng, Wang Kun. Dynamic Response of Idiopathic Scoliosis and Kyphosis Spine[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 482-492.
[1] WEINSTEIN S L, ZAVALA D C, PONSETI I V. Idiopathic scoliosis: Long-term follow-up and prognosis in untreated patients [J]. The Journal of Bone and Joint Surgery American Volume, 1981, 63(5): 702-712. [2] CORDOVER A M, BETZ R R, CLEMENTS D H, et al. Natural history of adolescent thoracolumbar and lumbar idiopathic scoliosis into adulthood [J]. Journal of Spinal Disorders, 1997, 10(3): 193-196. [3] HAEFELI M, ELFERING A, KILIAN R, et al. Nonoperative treatment for adolescent idiopathic scoliosis: A 10- to 60-year follow-up with special reference to health-related quality of life [J]. Spine, 2006, 31(3): 355-366. [4] SEIDEL H. On the relationship between whole-body vibration exposure and spinal health risk [J]. Industrial Health, 2005, 43(3): 361-377. [5] BOSHUIZEN H C, BONGERS P M, HULSHOF C T. Self-reported back pain in fork-lift truck and freight-container tractor drivers exposed to whole-body vibration [J]. Spine, 1992, 17(1): 59-65. [6] BONGERS P M, HULSHOF C T, DIJKSTRA L, et al. Back pain and exposure to whole body vibration in helicopter pilots [J]. Ergonomics, 1990, 33(8): 1007-1026. [7] ANDERSSON G B. Epidemiological features of chronic low-back pain [J]. Lancet, 1999, 354(9178): 581-585. [8] KATZ J N. Lumbar disc disorders and low-back pain: Socioeconomic factors and consequences [J]. The Journal of Bone and Joint Surgery American Volume, 2006, 88(Suppl 2): 21-24. [9] KELLER T S, COLLOCA C J, BÉLIVEAU J G. Force-deformation response of the lumbar spine: A sagittal plane model of posteroanterior manipulation and mobilization [J]. Clinical Biomechanics, 2002, 17(3): 185-196. [10] MEIR A R, FAIRBANK J C T, JONES D A, et al. High pressures and asymmetrical stresses in the scoliotic disc in the absence of muscle loading [J]. Scoliosis, 2007, 2: 4. [11] WOLFF J. Das gesetz der transformation der knochen [J]. DMW - Deutsche Medizinische Wochenschrift, 1893, 19(47): 1222-1224. [12] LE P, SOLOMONOW M, ZHOU B H, et al. Cyclic load magnitude is a risk factor for a cumulative lower back disorder [J]. Journal of Occupational & Environmental Medicine, 2007, 49(4): 375-387. [13] STEHBENS W E. Pathogenesis of idiopathic scoliosis revisited [J]. Experimental and Molecular Pathology, 2003, 74(1): 49-60. [14] KASRA M, SHIRAZI-ADL A, DROUIN G. Dynamics of human lumbar intervertebral joints [J]. Spine, 1992, 17(1): 93-102. [15] SHEN H K, CHEN Y R, LIAO Z H, et al. Biomechanical evaluation of anterior lumbar interbody fusion with various fixation options: Finite element analysis of static and vibration conditions [J]. Clinical Biomechanics, 2021, 84: 105339. [16] KONG W Z, GOEL V K. Ability of the finite element models to predict response of the human spine to sinusoidal vertical vibration [J]. Spine, 2003, 28(17): 1961-1967. [17] GUO L X, TEO E C, LEE K K, et al. Vibration characteristics of the human spine under axial cyclic loads: Effect of frequency and damping [J]. Spine, 2005, 30(6): 631-637. [18] AMIRI S, NASERKHAKI S, PARNIANPOUR M. Effect of whole-body vibration and sitting configurations on lumbar spinal loads of vehicle occupants [J]. Computers in Biology and Medicine, 2019, 107: 292-301. [19] ZHANG Z J, FOGEL G R, LIAO Z H, et al. Biomechanical analysis of lateral lumbar interbody fusion constructs with various fixation options: Based on a validated finite element model [J]. World Neurosurgery, 2018, 114: e1120-e1129. [20] GUO L X, WANG Z W, ZHANG Y M, et al. Material property sensitivity analysis on resonant frequency characteristics of the human spine [J]. Journal of Applied Biomechanics, 2009, 25(1): 64-72. [21] SEIDEL H, BLÜTHNER R, HINZ B. Application of finite-element models to predict forces acting on the lumbar spine during whole-body vibration [J]. Clinical Biomechanics, 2001, 16: S57-S63. [22] WANG Q D, GUO L X. Prediction of complications and fusion outcomes of fused lumbar spine with or without fixation system under whole-body vibration [J]. Medical & Biological Engineering & Computing, 2021, 59(6): 1223-1233. [23] XIANG P, DU C, ZHAO M, et al. Modal analysis of human lumbar spine using finite element method [J]. Journal of Medical Biomechanics, 2014, 29(2):154-160 (in Chinese). [24] GUO L, CHEN W, LIU X. FEM-based dynamic analysis of injured human spine [J]. Journal of Northeastern University (Natural Science), 2005, 26(9):836-839 (in Chinese). [25] SCHMIDT H, HEUER F, DRUMM J, et al. Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment [J]. Clinical Biomechanics, 2007, 22(4): 377-384. [26] FAN W. A finite element study on dynamic characteristics of the human whole lumbar spine under vibration [D]. Shenyang: Northeastern University, 2017 (in Chinese). [27] LI X F, LIU Z D, DAI L Y, et al. Dynamic response of the idiopathic scoliotic spine to axial cyclic loads [J]. Spine, 2011, 36(7): 521-528. [28] ZHAO D. Establishment of finite element model of adult degenerative scoliosis and posterior three-dimensional correction biomechanical study [D]. Changsha: Central South University, 2010 (in Chinese). [29] BUSSCHER I, VAN DIEËN J H, KINGMA I, et al. Biomechanical characteristics of different regions of the human spine [J]. Spine, 2009, 34(26): 2858-2864. [30] GUO L X, LI W J. Finite element modeling and static/dynamic validation of thoracolumbar-pelvic segment [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2020, 23(2): 69-80. [31] STOKES I A F, GARDNER-MORSE M. A database of lumbar spinal mechanical behavior for validation of spinal analytical models [J]. Journal of Biomechanics, 2016, 49(5): 780-785. [32] HILL T E, DESMOULIN G T, HUNTER C J. Is vibration truly an injurious stimulus in the human spine? [J]. Journal of Biomechanics, 2009, 42(16): 2631-2635. [33] LI X, FU R, WU H, et al. Dynamic characteristics of Lenke3 type idiopathic scoliosis [J]. Journal of Medical Biomechanics, 2022, 37(4):638-643 (in Chinese). [34] XIE J D, ZHANG S X, LI Y, et al. Dynamic characteristics of an adolescent idiopathic scoliotic spine [J]. Journal of Medical Biomechanics, 2018, 33(4): 312-319 (in Chinese). |
[1] | 徐敏杰1, 2, 王全保1, 段登平1. 变质心机构动态响应下的平流层飞艇纵向运动仿真[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1139-1150. |
[2] | 王晓静1,刘晓华2,高荣2. 具有状态时滞的奇异随机系统基于滚动时域控制的镇定[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 436-449. |
[3] | 王志伟1, 何炎平1, 李铭志1, 仇明2, 黄超1, 刘亚东1, 王梓1. 水平管内气液两相流流固耦合动力响应特性的数值研究[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 237-244. |
[4] | 辛尚哲, 王磊, 潘洁, 周东荣, 陈世海, 朱小东. 一种沉船打捞离底过程的三参数半定量风险评估方法[J]. 上海交通大学学报, 2023, 57(S1): 13-19. |
[5] | 辛尚哲, 王磊, 范锦宇, 周东荣, 陈世海, 朱小东. 基于底质力时历计算的沉船打捞离底过程动力特性分析及系泊系统优化[J]. 上海交通大学学报, 2023, 57(S1): 1-12. |
[6] | 朱小东, 周东荣, 高定全. 大吨位沉船整体打捞耦合动力响应数值仿真[J]. 上海交通大学学报, 2023, 57(S1): 203-212. |
[7] | 黄俊, 李少杰, 康庄. 大管径海底管道J型铺设分析[J]. 海洋工程装备与技术, 2023, 10(2): 145-151. |
[8] | 黄俊, 康, 张岩松, 艾尚茂. 深水钢悬链线立管波致疲劳预报时频方法对比[J]. 海洋工程装备与技术, 2023, 10(2): 112-118. |
[9] | 刘钇汛, 刘志浩, 高钦和, 黄通, 马栋. 基于周向应变分析的重载轮胎垂向力估计算法[J]. 上海交通大学学报, 2023, 57(10): 1273-1281. |
[10] | 徐晨辉, 俞芳慧, 何德峰. 基于扰动块的柔性臂分布式滚动时域估计[J]. 上海交通大学学报, 2022, 56(7): 868-876. |
[11] | 张培珍, 林芳. 开式呼吸蛙人专用氧气瓶声散射特性[J]. 上海交通大学学报, 2022, 56(6): 764-771. |
[12] | 姜俊豪, 陈刚. 驾驶机器人转向操纵的动态模型预测控制方法[J]. 上海交通大学学报, 2022, 56(5): 594-603. |
[13] | 袁振钦, 邹 科, 孙亚峰, 刘 刚, 屈 衍, 李居跃. 基于时域分析法的动态电缆疲劳分析[J]. 海洋工程装备与技术, 2022, 9(2): 50-55. |
[14] | 金皓纯, 葛敏辉, 徐波. 基于极限学习机的双馈感应风力发电机综合自适应调频参数优化方法[J]. 上海交通大学学报, 2021, 55(S2): 42-50. |
[15] | 康俊涛, 张亚州, 秦世强. 基于一种混合智能算法的有限元模型修正多解问题[J]. 上海交通大学学报, 2020, 54(6): 652-660. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||
全文 1
|
|
|||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||