J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (6): 1139-1150.doi: 10.1007/s12204-022-2552-0
徐敏杰1,2,王全保1,段登平1
收稿日期:
2021-10-08
接受日期:
2021-11-19
出版日期:
2024-11-28
发布日期:
2024-11-28
XU Minjie1,2 (徐敏杰), WANG Quanbao1∗ (王全保), DUAN Dengping1 (段登平)
Received:
2021-10-08
Accepted:
2021-11-19
Online:
2024-11-28
Published:
2024-11-28
摘要: 提出了一种总质量恒定的平流层动质量飞艇的设计方法,并推导了基于牛顿-欧拉法的一般动力学方程。考虑滑块命令响应的时滞性以及与飞艇状态参数的动态耦合,设计了具有输入约束和状态约束的位置跟踪控制器,使得滑块动态响应系统具有临界阻尼特性。以动质量平流层飞艇的纵向姿态运动为研究对象,进行了参数化建模和姿态控制仿真,并分析了不同质量比下动质量控制的姿态控制能力。仿真结果表明:姿态控制能力不受气流速度的影响,滑块质量比是影响姿态控制能力的主要因素。滑块控制器的参数直接影响姿态控制的动态性能,也决定了飞艇的动态耦合水平。与基于气动控制面的姿态控制相比,动质量控制能使飞行器在稳态时的气流速度和攻角收敛到初始状态,并保持良好的气动外形。
中图分类号:
徐敏杰1, 2, 王全保1, 段登平1. 变质心机构动态响应下的平流层飞艇纵向运动仿真[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1139-1150.
XU Minjie1, 2 (徐敏杰), WANG Quanbao1∗ (王全保), DUAN Dengping1 (段登平). Longitudinal Motion Simulation of Stratospheric Airship Under Dynamic Response of Moving-Mass Actuator[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1139-1150.
[1] HOU Z X, YANG X X, QIAO K, et al. Stratospheric airship technology [M]. Beijing: Science Press, 2019 (in Chinese). [2] ONDA M, MORIKAWA Y. High-altitude lighter-than-air powered platform [R]. Warrendale: SAE Technical Paper, 1991: 687-694. [3] COLOZZA A, DOLCE J. Initial feasibility assessment of a high altitude long endurance airship: NASA CR212724 [R]. Washington: NASA, 2003. [4] CHU A, BLACKMORE M, OHOLENDT R, et al. A novel concept for stratospheric communications and surveillance: The StarLight [C]//AIAA Balloon Systems Conference. Williamsburg: AIAA, 2007: 2601. [5] ZHENG W, YANG Y N, WU J. Survey of flight control for the stratosphere airship [J]. Flight Dynamics, 2013,31(3): 193-197 (in Chinese). [6] REGAN F J, KAVETSKY R A. Add-on controller for ballistic reentry vehicles [J]. IEEE Transactions on Automatic Control, 1984, 12(6): 869-880. [7] DENG Y G, BAO Y P, LEI J W, et al. Research on composite control of new air vehicle [J]. Acta Simulata Systematica Sinica, 2005, 17(7): 1531-1534 (in Chinese). [8] GAO M W, SHAN X X. By changing position research of airship’s center of gravity to control longitudinal motion [J]. Chinese Quarterly of Mechanics. 2006, 27(4):714-728 (in Chinese). [9] SMITH I, LEE M K, FORTNEBERRY M, et al. HiSentinel80: flight of a high altitude airship [C]//11th AIAA Aviation Technology, Integration, and Operations Conference. Virginia Beach: AIAA, 2011: 6973. [10] LEE M, SMITH I, ANDROULAKAKIS S. Highaltitude LTA airship efforts at the US army SMDC/ARSTRAT [C]//18th AIAA Lighter-Than-Air Systems Technology Conference. Seattle: AIAA, 2009:2852. [11] ZHOU G, CHEN L, DONG Q. Modeling and analysis of moving-mass actuated stratospheric airship [J]. High Technology Letters, 2013, 19(2): 145-149. [12] WANG F, ZHOU J H, MIAO J G. Pitch handling characteristics of the stratospheric airship based on moving mass control [C]//2016 35th Chinese Control Conference. Chengdu: IEEE, 2016: 10915-10920. [13] CHEN L, ZHOU G, YAN X J, et al. Composite control of stratospheric airships with moving masses [J].Journal of Aircraft, 2012, 49(3): 794-801. [14] OUYANG J, QU W D, XI Y G. Stratospheric verifying airship modeling and analysis [J]. Journal of Shanghai Jiao Tong University, 2003, 37(6): 956-960 (in Chinese). [15] YANG Y N. Dynamics modeling and flight control for a stratospheric airship [D]. Changsha: National University of Defense Technology, 2013 (in Chinese). [16] MIAO J G. Dynamics analysis & motion control of airship [D]. Beijing: University of Chinese Academy of Sciences (Space Science and Applications Research Center), 2008 (in Chinese). [17] MUELLER J, PALUSZEK M, ZHAO Y. Development of an aerodynamic model and control law design for a high altitude airship [C]//AIAA 3rd “Unmanned Unlimited” Technical Conference, Workshop and Exhibit.Chicago: AIAA, 2004: 6479. [18] OUYANG J. Research on modeling and control of unmanned airship [D]. Shanghai: Shanghai Jiaotong University, 2003 (in Chinese). [19] SCHMITENDORF W E, BARMISH B R. Null controllability of linear systems with constrained controls[J]. SIAM Journal on Control and Optimization, 1980,18(4): 327-345. |
[1] | 王志伟1, 何炎平1, 李铭志1, 仇明2, 黄超1, 刘亚东1, 王梓1. 水平管内气液两相流流固耦合动力响应特性的数值研究[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 237-244. |
[2] | 朱小东, 周东荣, 高定全. 大吨位沉船整体打捞耦合动力响应数值仿真[J]. 上海交通大学学报, 2023, 57(S1): 203-212. |
[3] | 吕硕, 张庆振, 郭云鹤, 丰硕. 基于反步滑模的偏转弹头导弹姿态控制[J]. 空天防御, 2022, 5(4): 30-37. |
[4] | 金皓纯, 葛敏辉, 徐波. 基于极限学习机的双馈感应风力发电机综合自适应调频参数优化方法[J]. 上海交通大学学报, 2021, 55(S2): 42-50. |
[5] | 刘凯, 杨宝庆. 一种基于自抗扰方法的姿控直气复合控制系统设计[J]. 空天防御, 2021, 4(2): 40-. |
[6] | 张力文, 徐齐平, 刘锦阳. 软体尺蠖爬行机器人建模与仿真分析[J]. 上海交通大学学报, 2021, 55(2): 149-160. |
[7] | 梅瀚桐, 麻黎娟, 吴光辉, 邵翔, 许朋亚. 远程导弹的自适应反步姿态控制系统设计[J]. 空天防御, 2020, 3(3): 118-123. |
[8] | 李瑞,孟祥慧. 船用柴油机十字头滑块摩擦动力学影响因素分析[J]. 上海交通大学学报, 2020, 54(10): 1035-1044. |
[9] | 程小宣,陈俐. 基于稳定性分析的电控离合器任务调度周期设计[J]. 上海交通大学学报(自然版), 2019, 53(4): 438-446. |
[10] | 万航, 徐胜利, 张庆振, 张迪. 基于动态逆的空天变体飞行器姿态控制[J]. 空天防御, 2019, 2(4): 25-31. |
[11] | 孙双双,武丹,刘冬迪. 内嵌伪弹性形状记忆合金纤维的 复合材料空心梁动态有限元分析[J]. 上海交通大学学报(自然版), 2018, 52(7): 845-852. |
[12] | 杨伟, 张永辉, 孙国民. 应用于悬链锚腿式系泊系统的灯笼型水下软管设计研究[J]. 海洋工程装备与技术, 2018, 5(3): 165-173. |
[13] | 马网扣, 袁飞晖. 流速对自升式平台动力放大因子的影响研究[J]. 海洋工程装备与技术, 2017, 4(5): 293-299. |
[14] | 陈宇峰,陈务军,何艳丽,张大旭. 柔性飞艇主气囊干湿模态分析与影响因素[J]. 上海交通大学学报(自然版), 2014, 48(02): 234-238. |
[15] | 张礼学1,王中伟1,杨希祥1,宋庆雷2. 基于Gauss伪谱法的平流层飞艇上升段航迹规划[J]. 上海交通大学学报(自然版), 2013, 47(08): 1205-1209. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||