J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (3): 591-599.doi: 10.1007/s12204-024-2701-8
收稿日期:
2023-10-13
接受日期:
2023-11-03
出版日期:
2025-06-06
发布日期:
2025-06-06
朵琳,许渤雨,任勇,杨新
Received:
2023-10-13
Accepted:
2023-11-03
Online:
2025-06-06
Published:
2025-06-06
摘要: 为了提高磁共振成像的重建精度,提出了一种精确的自然图像压缩感知 (Compressed Sensing, CS)重建网络,结合了基于模型和基于深度学习的CS-MRI 方法的优点。理论上,在线性重建中增强几何纹理细节是可行的。首先,将优化问题分解为线性近似和几何补偿两个问题。针对图像线性近似问题,采用数据一致性模块对其进行处理。由于处理过程会丢失纹理细节,因此提出一种显式结合图像和频率特征表示的神经网络层,命名为蝶形空洞几何蒸馏网络。该网络引入了蝶形运算的思想,巧妙地融合了图像域和频域的特征,避免了单一域提取特征时纹理细节的丢失。最后,结合通道注意力机制和空洞卷积设计了通道特征融合模块。通道注意力使得最终输出的特征图集中在更重要的部分,从而提高了特征表示能力。空洞卷积扩大了感受野,从而获得更稠密的图像特征数据。实验结果表明,在笛卡尔采样掩码CS比例为10%的大脑数据集上,该网络的峰值信噪比比 ISTA-Net+、FISTA 和DGDN 网络分别提高了 5.43 dB、5.23 dB 和 3.89 dB。
中图分类号:
. 基于蝶形空洞几何蒸馏的磁共振成像重建[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 591-599.
Duolin, Xu Boyu, Ren Yong, Yang Xin. Magnetic Resonance Imaging Reconstruction Based on Butterfly Dilated Geometric Distillation[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 591-599.
[1] ZHAN Z F, CAI J F, GUO D, et al. Fast multiclass dictionaries learning with geometrical directions in MRI reconstruction [J]. IEEE Transactions on Biomedical Engineering, 2016, 63(9): 1850-1861. [2] LAI Z Y, QU X B, LIU Y S, et al. Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform [J]. Medical Image Analysis, 2016, 27: 93-104. [3] LINGALA S G, JACOB M. Blind compressive sensing dynamic MRI [J]. IEEE Transactions on Medical Imaging, 2013, 32(6): 1132-1145. [4] BLOCK K T, UECKER M, FRAHM J. Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint [J]. Magnetic Resonance in Medicine, 2007, 57(6): 1086-1098. [5] BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems [J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202. [6] CHAMBOLLE A, POCK T. A first-order primal-dual algorithm for convex problems with applications to imaging [J]. Journal of Mathematical Imaging and Vision, 2011, 40(1): 120-145. [7] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers [J]. Foundations and Trends® in Machine Learning, 2011, 3(1): 1-122. [8] DATTA S, DANDAPAT S, DEKA B. A deep framework for enhancement of diagnostic information in CSMRI reconstruction [J]. Biomedical Signal Processing and Control, 2022, 71: 103117. [9] WANG S S, SU Z H, YING L, et al. Accelerating magnetic resonance imaging via deep learning [C]//2016 IEEE 13th International Symposium on Biomedical Imaging. Prague: IEEE, 2016: 514-517. [10] JIN K H, MCCANN M T, FROUSTEY E, et al. Deep convolutional neural network for inverse problems in imaging [J]. IEEE Transactions on Image Processing, 2017, 26(9): 4509-4522. [11] QUAN T M, NGUYEN-DUC T, JEONG W K. Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss [J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1488-1497. [12] YANG G, YU S M, DONG H, et al. DAGAN: Deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction [J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1310-1321. [13] WEI H N, LI Z S, WANG S, et al. Undersampled multi-contrast MRI reconstruction based on double-domain generative adversarial network [J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(9): 4371-4377. [14] ÖZBEY M, DALMAZ O, DAR S U H, et al. Unsupervised medical image translation with adversarial diffusion models [J]. IEEE Transactions on Medical Imaging, 2023, 42(12): 3524-3539. [15] GÜNGÖR A, DAR S U, ÖZTÜRK Ş, et al. Adaptive diffusion priors for accelerated MRI reconstruction [J]. Medical Image Analysis, 2023, 88: 102872. [16] SOUZA R, FRAYNE R. A hybrid frequency-domain/image-domain deep network for magnetic resonance image reconstruction [C]//2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images. Rio de Janeiro: IEEE, 2019: 257-264. [17] ZHOU B, ZHOU S K. DuDoRNet: learning a dual-domain recurrent network for fast MRI reconstruction with deep T1 prior [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 4272-4281. [18] YANG Y, SUN J, LI H B, et al. ADMM-CSNet: A deep learning approach for image compressive sensing [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(3): 521-538. [19] ZHENG H, FANG F M, ZHANG G X. Cascaded dilated dense network with two-step data consistency for MRI reconstruction [C]// 33rd Conference on Neural Information Processing Systems. Vancouver: NIPS, 2019: 1744-1754. [20] DUAN J M, SCHLEMPER J, QIN C, et al. VS-net: Variable splitting network for accelerated parallel MRI reconstruction [M]// Medical image computing and computer assisted intervention – MICCAI 2019. Cham: Springer, 2019: 713-722. [21] SCHLEMPER J, CABALLERO J, HAJNAL J V, et al. A deep cascade of convolutional neural networks for dynamic MR image reconstruction [J]. IEEE Transactions on Medical Imaging, 2017, 37(2): 491-503. [22] ZHANG J, GHANEM B. ISTA-net: Interpretable optimization-inspired deep network for image compressive sensing [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1828-1837. [23] LUSTIG M, DONOHO D, PAULY J M. Sparse MRI: The application of compressed sensing for rapid MR imaging [J]. Magnetic Resonance in Medicine, 2007, 58(6): 1182-1195. [24] XIANG J X, DONG Y G, YANG Y J. FISTA-net: Learning a fast iterative shrinkage thresholding network for inverse problems in imaging [J]. IEEE Transactions on Medical Imaging, 2021, 40(5): 1329-1339. [25] SINGH N M, IGLESIAS J E, ADALSTEINSSON E, et al. Joint frequency and image space learning for MRI reconstruction and analysis [J]. Machine Learning for Biomedical Imaging, 2022, 1: 1-28. [26] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [M]// Computer vision – ECCV 2018. Cham: Springer, 2018: 3-19. [27] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions [DB/OL]. (2015-11-23). https://arxiv.org/abs/1511.07122 [28] JIANG K, WANG Z Y, YI P, et al. Deep distillation recursive network for remote sensing imagery super-resolution [J]. Remote Sensing, 2018, 10(11): 1700. [29] BIAN W. Optimization-Based Deep learning methods for Magnetic Resonance Imaging Reconstruction and Synthesis[D]. Gainesville: University of Florida, 2022. [30] BERMÚDEZ C, REMEDIOS S, RAMADASS K, et al. Generalizing deep whole-brain segmentation for post-contrast MRI with transfer learning [J]. Journal of Medical Imaging, 2020, 7: 64004-064004. [31] KINGMA D P, BA J. Adam: A method for stochastic optimization [DB/OL]. (2014-12-22). https://arxiv.org/abs/1412.6980 [32] BERNSTEIN M A, FAIN S B, RIEDERER S J. Effect of windowing and zero-filled reconstruction of MRI data on spatial resolution and acquisition strategy [J]. Journal of Magnetic Resonance Imaging, 2001, 14(3): 270-280. [33] QU X B, GUO D, NING B D, et al. Undersampled MRI reconstruction with patch-based directional wavelets [J]. Magnetic Resonance Imaging, 2012, 30(7): 964-977. [34] QU X B, HOU Y K, LAM F, et al. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator [J]. Medical Image Analysis, 2014, 18(6): 843-856. [35] FAN X H, YANG Y, ZHANG J P. Deep geometric distillation network for compressive sensing MRI [C]//2021 IEEE EMBS International Conference on Biomedical and Health Informatics. Athens: IEEE, 2021: 1-4. |
[1] | . 血管介入手术路径规划及三维视觉导航[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 472-481. |
[2] | . 基于毫米波雷达的智能心率提取方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 493-498. |
[3] | . 基于变换学习和结构化低秩模型的并行成像快速重构算法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 499-509. |
[4] | . 用于内窥镜图像息肉检测的实时轻量级卷积神经网络[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 521-534. |
[5] | . 基于改进加权融合的胶囊内镜肠道内壁图像拼接方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 535-544. |
[6] | . 基于外积有效和字典学习的改进灵敏度编码重建算法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 555-565. |
[7] | . 迁移学习和注意机制融合用于CT图像COVID-19病灶分割的计算机辅助诊断[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 566-581. |
[8] | . 基于改进差分进化极限学习机的锂离子电池健康状态估计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 252-261. |
[9] | . 基于改进FCOS算法的钢丝绳芯输送带损伤X射线图像检测[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 309-318. |
[10] | . 基于双流自编码器的无监督动作识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 330-336. |
[11] | . 基于空间特征学习与多粒度特征融合的行人重识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 363-374. |
[12] | 丁黎辉1, 2, 付立军1, 3, 杨光4, 5, 6, 万林4, 5, 常志军7. 基于视频的婴儿癫痫性痉挛综合征检测:建模、检测与评估[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 1-9. |
[13] | 孔会扬1, 王殊轶1, 张璨2, 陈赞2, 3. 手术导板辅助增强现实技术与传统技术在椎弓根螺钉放置中的比较[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 10-17. |
[14] | 赵艳飞1,2,3, 肖鹏4, 王景川1,2,3, 郭锐4. 基于局部语义地图的移动机器人半自主导航[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 27-33. |
[15] | 傅航1,许江长 1,李寅炜2,4,周慧芳2,4,陈晓军1,3. 基于视频图像增强现实的视神经管减压手术导航系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 34-42. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||