[1] ZHAN Z F, CAI J F, GUO D, et al. Fast
multiclass dictionaries learning with geometrical directions in MRI
reconstruction [J]. IEEE Transactions on Biomedical Engineering, 2016, 63(9):
1850-1861.
[2] LAI Z Y, QU X B, LIU Y S, et al. Image
reconstruction of compressed sensing MRI using graph-based redundant wavelet
transform [J]. Medical Image Analysis, 2016, 27: 93-104.
[3] LINGALA S G, JACOB M. Blind compressive
sensing dynamic MRI [J]. IEEE Transactions on Medical Imaging, 2013, 32(6):
1132-1145.
[4] BLOCK K T, UECKER M, FRAHM J.
Undersampled radial MRI with multiple coils. Iterative image reconstruction
using a total variation constraint [J]. Magnetic Resonance in Medicine, 2007, 57(6):
1086-1098.
[5] BECK A, TEBOULLE
M. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems [J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202.
[6] CHAMBOLLE A, POCK T. A first-order
primal-dual algorithm for convex problems with applications to imaging [J]. Journal
of Mathematical Imaging and Vision, 2011, 40(1): 120-145.
[7] BOYD S, PARIKH
N, CHU E, et al. Distributed optimization and statistical learning via the
alternating direction method of multipliers [J]. Foundations
and Trends® in Machine Learning, 2011, 3(1): 1-122.
[8] DATTA S, DANDAPAT S, DEKA B. A deep
framework for enhancement of diagnostic information in CSMRI reconstruction
[J]. Biomedical Signal Processing and Control, 2022, 71: 103117.
[9] WANG S S, SU Z H, YING L, et al.
Accelerating magnetic resonance imaging via deep learning [C]//2016 IEEE 13th International
Symposium on Biomedical Imaging. Prague: IEEE, 2016: 514-517.
[10] JIN K H, MCCANN M T, FROUSTEY E, et
al. Deep convolutional neural network for inverse problems in imaging [J]. IEEE
Transactions on Image Processing, 2017, 26(9): 4509-4522.
[11] QUAN T M, NGUYEN-DUC T, JEONG W K.
Compressed sensing MRI reconstruction using a generative adversarial network
with a cyclic loss [J]. IEEE Transactions on Medical Imaging, 2018, 37(6):
1488-1497.
[12] YANG G, YU S M, DONG H, et al. DAGAN:
Deep de-aliasing generative adversarial networks for fast compressed sensing
MRI reconstruction [J]. IEEE Transactions on Medical Imaging, 2018, 37(6):
1310-1321.
[13] WEI H N, LI Z S, WANG S, et al.
Undersampled multi-contrast MRI reconstruction based on double-domain
generative adversarial network [J]. IEEE Journal of Biomedical and Health
Informatics, 2022, 26(9): 4371-4377.
[14] ÖZBEY M, DALMAZ O, DAR S U H, et al.
Unsupervised medical image translation with adversarial diffusion models [J]. IEEE
Transactions on Medical Imaging, 2023, 42(12): 3524-3539.
[15] GÜNGÖR A, DAR S U, ÖZTÜRK Ş, et al.
Adaptive diffusion priors for accelerated MRI reconstruction [J]. Medical Image
Analysis, 2023, 88: 102872.
[16] SOUZA R, FRAYNE R. A hybrid
frequency-domain/image-domain deep network for magnetic resonance image
reconstruction [C]//2019 32nd SIBGRAPI Conference on Graphics, Patterns and
Images. Rio de Janeiro: IEEE, 2019: 257-264.
[17] ZHOU B, ZHOU S K. DuDoRNet: learning a
dual-domain recurrent network for fast MRI reconstruction with deep T1 prior
[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
Seattle: IEEE, 2020: 4272-4281.
[18] YANG Y, SUN J, LI H B, et al.
ADMM-CSNet: A deep learning approach for image compressive sensing [J]. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2020, 42(3): 521-538.
[19] ZHENG H, FANG F M, ZHANG G X. Cascaded
dilated dense network with two-step data consistency for MRI reconstruction [C]//
33rd Conference on Neural Information Processing Systems. Vancouver: NIPS,
2019: 1744-1754.
[20] DUAN J M, SCHLEMPER J, QIN C, et al.
VS-net: Variable splitting network for accelerated parallel MRI reconstruction
[M]// Medical image computing and computer assisted intervention – MICCAI 2019.
Cham: Springer, 2019: 713-722.
[21] SCHLEMPER J, CABALLERO J, HAJNAL J V,
et al. A deep cascade of convolutional neural networks for dynamic MR image
reconstruction [J]. IEEE Transactions on Medical Imaging, 2017, 37(2): 491-503.
[22] ZHANG J, GHANEM B. ISTA-net:
Interpretable optimization-inspired deep network for image compressive sensing
[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt
Lake City: IEEE, 2018: 1828-1837.
[23] LUSTIG M, DONOHO D, PAULY J M. Sparse
MRI: The application of compressed sensing for rapid MR imaging [J]. Magnetic
Resonance in Medicine, 2007, 58(6): 1182-1195.
[24] XIANG J X, DONG Y G, YANG Y J. FISTA-net:
Learning a fast iterative shrinkage thresholding network for inverse problems
in imaging [J]. IEEE Transactions on Medical Imaging, 2021, 40(5): 1329-1339.
[25] SINGH N M, IGLESIAS J E, ADALSTEINSSON
E, et al. Joint frequency and image space learning for MRI reconstruction and
analysis [J]. Machine Learning for Biomedical Imaging, 2022, 1: 1-28.
[26] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional
block attention module [M]// Computer vision – ECCV 2018. Cham: Springer, 2018:
3-19.
[27] YU F, KOLTUN V. Multi-scale context
aggregation by dilated convolutions [DB/OL]. (2015-11-23). https://arxiv.org/abs/1511.07122
[28] JIANG K, WANG Z Y, YI P, et al. Deep
distillation recursive network for remote sensing imagery super-resolution [J].
Remote Sensing, 2018, 10(11): 1700.
[29] BIAN W. Optimization-Based Deep learning
methods for Magnetic Resonance Imaging Reconstruction and Synthesis[D]. Gainesville:
University of Florida, 2022.
[30] BERMÚDEZ C, REMEDIOS S, RAMADASS K, et
al. Generalizing deep whole-brain segmentation for post-contrast MRI with
transfer learning [J]. Journal of Medical Imaging, 2020, 7: 64004-064004.
[31] KINGMA D P, BA J. Adam: A method for
stochastic optimization [DB/OL]. (2014-12-22). https://arxiv.org/abs/1412.6980
[32] BERNSTEIN M A, FAIN S B, RIEDERER S J.
Effect of windowing and zero-filled reconstruction of MRI data on spatial resolution
and acquisition strategy [J]. Journal of Magnetic Resonance Imaging, 2001, 14(3):
270-280.
[33] QU X B, GUO D,
NING B D, et al. Undersampled MRI reconstruction with patch-based directional
wavelets [J]. Magnetic Resonance Imaging, 2012, 30(7): 964-977.
[34] QU X B, HOU Y K, LAM F, et al.
Magnetic resonance image reconstruction from undersampled measurements using a
patch-based nonlocal operator [J]. Medical Image Analysis, 2014, 18(6):
843-856.
[35] FAN X H, YANG Y, ZHANG J P. Deep
geometric distillation network for compressive sensing MRI [C]//2021 IEEE EMBS
International Conference on Biomedical and Health Informatics. Athens: IEEE,
2021: 1-4.
|