J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (1): 34-42.doi: 10.1007/s12204-024-2722-3
傅航1,许江长 1,李寅炜2,4,周慧芳2,4,陈晓军1,3
接受日期:
2023-08-07
出版日期:
2025-01-28
发布日期:
2025-01-28
FU Hang1 (傅航),XU Jiangchang1 (许江长), LI Yinwei2,4* (李寅炜),ZHOU Huifang2,4 (周慧芳),CHEN Xiaojun1,3* (陈晓军)
Accepted:
2023-08-07
Online:
2025-01-28
Published:
2025-01-28
摘要: 内镜下经鼻视神经管减压手术是治疗复杂外伤性视神经病变的重要手段,但是其存在术中视神经不可见的难题。因此,开发了一套基于内窥镜图像的增强现实手术导航系统,实现视神经在内窥镜图像上的虚实融合显示,辅助医生判断视神经位置,降低手术风险。在现有的标定方法上,提出基于棋盘格不动点的标定算法;针对增强现实技术存在的精度问题,提出光学导航与视觉融合补偿算法提升术中跟踪精度。设计并开展模型实验,验证系统的精度和稳定性。所提出的增强现实系统平均跟踪误差为(0.99±0.46)mm,表明所提出的算法能够有效提升增强现实手术导航系统的精度,能够准确地呈现隐蔽的视神经等深部组织,未来在眶颌外科手术中将具有良好的应用前景。
中图分类号:
傅航1,许江长 1,李寅炜2,4,周慧芳2,4,陈晓军1,3. 基于视频图像增强现实的视神经管减压手术导航系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 34-42.
FU Hang1 (傅航),XU Jiangchang1 (许江长), LI Yinwei2,4* (李寅炜),ZHOU Huifang2,4 (周慧芳),CHEN Xiaojun1,3* (陈晓军). Augmented Reality Based Navigation System for Endoscopic Transnasal Optic Canal Decompression[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 34-42.
[1] LIN J Q, HU W L, WU Q, et al. An evolving perspective of endoscopic transnasal optic canal decompression for traumatic optic neuropathy in clinic [J]. Neurosurgical Review, 2021, 44(1): 19-27. [2] STEINSAPIR K D, GOLDBERG R A. Traumatic optic neuropathy: An evolving understanding [J]. American Journal of Ophthalmology, 2011, 151(6): 928- 933.e2. [3] PIROUZMAND F. Epidemiological trends of traumatic optic nerve injuries in the largest Canadian adult trauma center [J]. The Journal of Craniofacial Surgery, 2012, 23(2): 516-520. [4] AL-QURAINY I A, STASSEN L F, DUTTON G N, et al. The characteristics of midfacial fractures and the association with ocular injury: A prospective study [J]. Postgraduate Medical Journal, 1991, 29(5): 291-301. [5] HOLT G R, HOLT J E. Incidence of eye injuries in facial fractures: An analysis of 727 cases [J]. Marine Drugs, 1983, 91(3): 276-279. [6] HE Z H, LI Q, YUAN J M, et al. Evaluation of transcranial surgical decompression of the optic canal as a treatment option for traumatic optic neuropathy [J]. Clinical Neurology and Neurosurgery, 2015, 134: 130-135. [7] ABHINAV K, ACOSTA Y, WANG W H, et al. Endoscopic endonasal approach to the optic canal: Anatomic considerations and surgical relevance [J]. Neurosurgery, 2015, 11(3): 431-446. [8] PARK S, HOWE R D, TORCHIANA D F. Virtual fixtures for robotic cardiac surgery [M]//Medical image computing and computer-assisted intervention – MICCAI 2001. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001: 1419-1420. [9] CITARDI M J, AGBETOBA A, BIGCAS J L, et al. Augmented reality for endoscopic sinus surgery with surgical navigation: A cadaver study [J]. International Forum of Allergy & Rhinology, 2016, 6(5): 523-528. [10] WINNE C, KHAN M, STOPP F, et al. Overlay visualization in endoscopic ENT surgery [J]. International Journal of Computer Assisted Radiology and Surgery, 2011, 6(3): 401-406. [11] JIA T T, TAYLOR Z A, CHEN X J. Long term and robust 6DoF motion tracking for highly dynamic stereo endoscopy videos [J]. Computerized Medical Imaging and Graphics, 2021, 94: 101995. [12] GOLSE N, PETIT A, LEWIN M, et al. Augmented reality during open liver surgery using a markerless non-rigid registration system [J]. Journal of Gastrointestinal Surgery, 2021, 25(3): 662-671. [13] SHIU Y C, AHMAD S. Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form AX = XB [J]. IEEE Transactions on Robotics and Automation, 1989, 5(1): 16-29. [14] THOMPSON S, STOYANOV D, SCHNEIDER C, et al. Hand-eye calibration for rigid laparoscopes using an invariant point [J]. International Journal of Computer Assisted Radiology and Surgery, 2016, 11(6): 1071-1080. [15] MORGAN I, JAYARATHNE U, RANKIN A, et al. Hand-eye calibration for surgical cameras: A Procrustean Perspective-n-Point solution [J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(7): 1141-1149. [16] LEE S, SHIM S, HA H G, et al. Simultaneous optimization of patient image registration and hand–eye calibration for accurate augmented reality in surgery [J]. IEEE Transactions on Biomedical Engineering, 2020, 67(9): 2669-2682. [17] KINDRATENKO V V. A survey of electromagnetic position tracker calibration techniques [J]. Virtual Reality, 2000, 5(3): 169-182. [18] SHAO L, FU T Y, ZHENG Z, et al. Augmented reality navigation with real time tracking for facial repair surgery [J]. International Journal of Computer Assisted Radiology and Surgery, 2022, 17(6): 981-991. [19] GAO Y, LIU K, LIN L, et al. Use of augmented reality navigation to optimise the surgical management of craniofacial fibrous dysplasia [J]. British Journal of Oral and Maxillofacial Surgery, 2022, 60(2): 162-167. [20] ARUN K S, HUANG T S, BLOSTEIN S D. Leastsquares fitting of two 3-D point sets [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, PAMI-9(5): 698-700. [21] BESL P J, MCKAY N D. A method for registration of 3-D shapes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256. [22] SHAO J L, LUO H L, XIAO D Q, et al. Progressive hand-eye calibration for laparoscopic surgery navigation [M]//Computer assisted and robotic endoscopy and clinical image-based procedures. Cham: Springer, 2017: 42-49. [23] ZHANG Z Y. Flexible camera calibration by viewing a plane from unknown orientations [C]//Seventh IEEE International Conference on Computer Vision. Kerkyra: IEEE, 1999: 666-673. [24] LI L, YANG J, CHU Y K, et al. A novel augmented reality navigation system for endoscopic sinus and skull base surgery: A feasibility study [J]. PLoS One, 2016, 11(1): e0146996. |
[1] | . 特发性脊柱侧后凸的动态响应[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 482-492. |
[2] | . 基于毫米波雷达的智能心率提取方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 493-498. |
[3] | . 基于呼气末二氧化碳感知的气管插管方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 582-590. |
[4] | . 基于增强现实和超细径摄像头的胸腔闭式引流穿刺可视化系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 417-424. |
[5] | . 近红外胶囊机器人无线能量接收线圈优化设计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 425-432. |
[6] | . 基于Voronoi Tessellation开发的径向梯度骨支架的机械和渗透性能研究[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 433-445. |
[7] | 周涵巍1,朱心平1,马有为2,王坤东1. 低延时纤维胆道镜机器人驱动控制系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 43-52. |
[8] | 詹何庆1,韩贵来1,魏传安1,李治群2. 人工智能结合磁共振成像和计算建模在心脏电生理与临床诊断中的应用[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 53-65. |
[9] | 刘玉川1,李浩1,唐宇龙1,梁杜娟2,谭佳3,符玥1,李勇明4. 基于互信息-支持向量回归的阿尔兹海默症磁共振影像脑年龄检测[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 130-135. |
[10] | 叶鹏,富荣昌,王召耀. 不同节段的颈椎前路椎间盘切除和融合术中植入Cage-Plate或Zero-P融合器系统后相邻节段生物力学分析[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 166-174. |
[11] | 贺贵松,黄学功,李峰. 基于主被动联合驱动的助力型踝关节外骨骼机器人的协调性设计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 197-208. |
[12] | 徐杨, 李万万. 短波红外时间分辨成像研究进展[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 29-36. |
[13] | 李明爱1,2,3,许冬芹1. 综述:运动想像脑机接口中的迁移学习[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 37-59. |
[14] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 521-527. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 17
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 281
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||