J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (1): 197-208.doi: 10.1007/s12204-023-2589-8
• • 上一篇
贺贵松,黄学功,李峰
收稿日期:
2022-06-14
接受日期:
2022-09-03
出版日期:
2025-01-28
发布日期:
2025-01-28
HE Guisong (贺贵松), HUANG Xuegong* (黄学功),LI Feng(李峰)
Received:
2022-06-14
Accepted:
2022-09-03
Online:
2025-01-28
Published:
2025-01-28
摘要: 随着现代化战争的不断升级,士兵需要将更多的作战物资运送到作战区域。由于士兵的负重能力有限,这严重制约了士兵的携行能力和机动能力,所以研制出适合单兵作战的助力型外骨骼机器人就显得迫在眉睫。以往的助力型外骨骼机器人大多数采用电机驱动,这种驱动方式有着很好的助力效果,但往往续航能力不足。本文针对这一缺点,通过对人体运动进行仿真分析,设计了一款基于主被动联合驱动的踝关节外骨骼机器人,并利用OpenSim软件仿真验证了弹簧的加入可以很好地实现助力效果,同时根据人体步态特征对外骨骼机器人进行了步态规划。之后采用理论分析说明了在该步态下可以实现弹簧、电机、穿戴者三者之间的协同。最后通过实验验证了主被动联合驱动的助力型踝关节外骨骼机器人的驱动协调性和助力性。
中图分类号:
贺贵松,黄学功,李峰. 基于主被动联合驱动的助力型踝关节外骨骼机器人的协调性设计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 197-208.
HE Guisong (贺贵松), HUANG Xuegong* (黄学功),LI Feng(李峰). Coordination Design of a Power-Assisted Ankle Exoskeleton Robot Based on Active-Passive Combined Drive[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 197-208.
[1] JACKSON R W, COLLINS S H. Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(10): 2059-2069. [2] BURTON A. Expecting exoskeletons for more than spinal cord injury [J]. The Lancet Neurology, 2018, 17(4): 302-303. [3] PUENTES S, KADONE H, KUBOTA S, et al. Reshaping of gait coordination by robotic intervention in myelopathy patients after surgery [J]. Frontiers in Neuroscience, 2018, 12: 99. [4] LI Z J, YUAN Y X, LUO L, et al. Hybrid brain/muscle signals powered wearable walking exoskeleton enhancing motor ability in climbing stairs activity [J]. IEEE Transactions on Medical Robotics and Bionics, 2019,1(4): 218-227. [5] XIAO Y F, JI X J, WU H, et al. Bionic knee joint structure and motion analysis of a lower extremity exoskeleton [C]//2020 4th International Conference on Robotics and Automation Sciences. Wuhan: IEEE,2020: 91-95. [6] GU C H, GAO M H, QIAN W X, et al. Gait recognition and robust autonomous location method of exoskeleton robot based on machine learning [C]//2019 4th International Conference on Control and Robotics Engineering. Nanjing: IEEE, 2019: 110-114. [7] ASBECK A T, SCHMIDT K, GALIANA I, et al. Multi-joint soft exosuit for gait assistance [C]//2015 IEEE International Conference on Robotics and Automation. Seattle: IEEE, 2015: 6197-6204. [8] ZHOU S Z, CHEN Z, SONG W, et al. Design and gait realization of power-assisted lower limbs exoskeleton [C]//2019 IEEE International Conference on Cybernetics and Intelligent Systems and IEEE Conference on Robotics, Automation and Mechatronics. Bangkok: IEEE, 2019: 101-106. [9] DING Y, GALIANA I, ASBECK A T, et al. Biomechanical and physiological evaluation of multi-joint assistance with soft exosuits [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(2): 119-130. [10] HE G, HUANG X, LI F, et al. Review of powerassisted lower limb exoskeleton robot [J]. Journal of Shanghai Jiao Tong University (Science), 2022. https://doi.org/10.1007/s12204-022-2489-3 [11] KIM M, LIU C, KIM J, et al. Bayesian optimization of soft exosuits using a metabolic estimator stopping process [C]//2019 International Conference on Robotics and Automation. Montreal: IEEE, 2019: 9173-9179. [12] HONG Y P, KOO D, PARK J I, et al. The SoftGait: A simple and powerful weight-support device for walking and squatting [C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg: IEEE, 2015: 6336-6341. [13] JIN X, PRADO A, AGRAWAL S K. Retraining of human gait: Are lightweight cable-driven leg exoskeleton designs effective? [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(4): 847-855. [14] GASPARRI G M, BAIR M O, LIBBY R P, et al. Verification of a robotic ankle exoskeleton control scheme for gait assistance in individuals with cerebral palsy [C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid, Spain: IEEE, 2018: 4673-4678. [15] MIYAZAKI T, TAGAMI T, MORISAKI D, et al. A motion control of soft gait assistive suit by gait phase detection using pressure information [J]. Applied Sciences, 2019, 9(14): 2869. [16] GASPARRI G M, LUQUE J, LERNER Z F. Proportional joint-moment control for instantaneously adaptive ankle exoskeleton assistance [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(4): 751-759. [17] THATTE N, SHAH T, GEYER H. Robust and adaptive lower limb prosthesis stance control via extended Kalman filter-based gait phase estimation [J]. IEEE Robotics and Automation Letters, 2019, 4(4): 3129-3136. [18] THAKUR C, OGAWA K, TSUJI T, et al. Soft wearable augmented walking suit with pneumatic gel muscles and stance phase detection system to assist gait [J]. IEEE Robotics and Automation Letters, 2018, 3(4):4257-4264. [19] CHEN C J, ZHANG Y, LI Y J, et al. Iterative learning control for a soft exoskeleton with hip and knee joint assistance [J]. Sensors, 2020, 20(15): 4333. [20] SIVIY C, BAE J, BAKER L, et al. Offline assistance optimization of a soft exosuit for augmenting ankle power of stroke survivors during walking [J]. IEEE Robotics and Automation Letters, 2020, 5(2): 828-835. [21] ROY G, BHUIYA A, MUKHERJEE A, et al. Kinect camera based gait data recording and analysis for assistive robotics: An alternative to goniometer based measurement technique [J]. Procedia Computer Science, 2018, 133: 763-771. [22] SCZESNY-KAISER M, TROST R, AACH M, et al. A randomized and controlled crossover study investigating the improvement of walking and posture functions in chronic stroke patients using HAL exoskeleton: The HALESTRO study (HAL-exoskeleton STROke study) [J]. Frontiers in Neuroscience, 2019, 13: 259. [23] KWON S H, LEE B S, LEE H J, et al. Energy efficiency and patient satisfaction of gait with knee-anklefoot orthosis and robot (ReWalk)-assisted gait in patients with spinal cord injury [J]. Annals of Rehabilitation Medicine, 2020, 44(2): 131-141. [24] LI J, ZHU L Y, GOU X F. Survey on exoskeleton lower limbs rehabilitation robot and its key technologies [J]. Chinese Medical Equipment Journal, 2018, 39(8): 95-100 (in Chinese). |
[1] | 赵艳飞1,2,3, 肖鹏4, 王景川1,2,3, 郭锐4. 基于局部语义地图的移动机器人半自主导航[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 27-33. |
[2] | 傅航1,许江长 1,李寅炜2,4,周慧芳2,4,陈晓军1,3. 基于视频图像增强现实的视神经管减压手术导航系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 34-42. |
[3] | 周涵巍1,朱心平1,马有为2,王坤东1. 低延时纤维胆道镜机器人驱动控制系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 43-52. |
[4] | 刘月笙, 贺宁, 贺利乐, 张译文, 习坤, 张梦芮. 基于机器学习的移动机器人路径跟踪MPC控制器参数自整定[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1028-1036. |
[5] | 董玉博1, 崔涛1, 周禹帆1, 宋勋2, 祝月2, 董鹏1. 基于长周期极坐标系追击问题的多智能体强化学习奖赏函数设计方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 646-655. |
[6] | 杜海阔1,2, 郭正玉3,4, 章露露1,2, 蔡云泽1,2. 基于多目标松散同步搜索的多目标多智能体异步路径规划[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 667-677. |
[7] | 董德金1,2,董诗音3,章露露1,2,蔡云泽1,2. 基于A-Star和DWA算法的野外环境路径规划[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 725-736. |
[8] | 李舒逸, 李旻哲, 敬忠良. 动态环境下基于改进DQN的多智能体路径规划方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 601-612. |
[9] | 徐亚茹1,2,李克鸿1,2,商新娜2,金晓明1,2,刘荣3,张建成1,2. 基于影响系数法的机器人动力学方程约束关系建立[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 450-456. |
[10] | 赵英策1,张广浩2,邢正宇2,李建勋2. 面向确定进攻对手策略的层次强化学习对抗算法研究[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 471-479. |
[11] | 李茹1,陈方2,俞文伟3,IGARASH Tatsuo3,4,舒雄鹏1,谢叻1,5,6. 一种新型线驱动手术软体机器人[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 60-72. |
[12] | 贺贵松, 黄学功, 李峰, 汪辉兴. 助力型下肢外骨骼机器人研究综述[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 1-15. |
[13] | 陶璟, 周振欢. 个性化下肢康复外骨骼机器人的关键技术综述[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 16-28. |
[14] | . 基于场端RGB-D相机阵列的室内停车场车辆定位系统[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 61-69. |
[15] | . 外参标定的激光-视觉-惯性里程计[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 70-76. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 20
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 263
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||