J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (1): 1-15.doi: 10.1007/s12204-022-2489-3
• • 下一篇
贺贵松,黄学功,李峰,汪辉兴
接受日期:
2021-11-11
出版日期:
2024-01-24
发布日期:
2024-01-24
HE Guisong(贺桂松),HUANG Xuegong*(黄学功),LI Feng (李峰), WANG Huixing (汪辉兴)
Accepted:
2021-11-11
Online:
2024-01-24
Published:
2024-01-24
摘要: 助力型下肢外骨骼机器人是一种可穿戴智能机器人系统,涉及力学、材料、电子、控制、机器人学等诸多领域。该系统借助外部能源为人类提供额外的动力,可以增强人体的机能,帮助穿戴者承受以往无法承受的重量。同时,通过合理的结构设计和被动储能等方式,还可以对特定动作进行辅助。本文首先介绍了助力型下肢外骨骼机器人在国内外的研究现状,针对几种典型样机进行了详细分析。之后又对其结构设计、驱动方式、感知技术、控制方法、能源管理、人机耦合等关键技术进行了综述,并将外骨骼机器人常用的一些设计方法进行了归纳与对比。最后总结了助力型下肢外骨骼机器人研究中依旧存在的问题和可能的解决方案,并对未来的发展趋势进行了展望。
中图分类号:
贺贵松, 黄学功, 李峰, 汪辉兴. 助力型下肢外骨骼机器人研究综述[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 1-15.
HE Guisong (贺贵松), HUANG Xuegong (黄学功), LI Feng (李峰), WANG Huixing (汪辉兴). Review of Power-Assisted Lower Limb Exoskeleton Robot[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 1-15.
[1]TAKAHASHI K Z, LEWEK M D, SAWICKI G S. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: A feasibility study [J]. Journal of Neuroengineering and Rehabilitation, 2015, 12: 23. [2]LI Y, HASHIMOTO M. PVC gel soft actuator-based wearable assist wear for hip joint support during walking [J]. Smart Materials and Structures, 2017, 26(12): 125003. [3]JACKSON R W, COLLINS S H. Heuristic-based ankle exoskeleton control for co-adaptive assistance of human locomotion [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(10): 2059-2069. [4]LEE Y, KIM Y J, LEE J, et al. Biomechanical design of a novel flexible exoskeleton for lower extremities [J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(5): 2058-2069. [5]BURTON A. Expecting exoskeletons for more than spinal cord injury [J]. The Lancet Neurology, 2018, 17(4): 302-303. [6]PUENTES S, KADONE H, KUBOTA S, et al. Reshaping of gait coordination by robotic intervention in myelopathy patients after surgery [J]. Frontiers in Neuroscience, 2018, 12: 99. [7]RAO L J, XIE L, ZHU X B. Research and design on lower exoskeleton rehabilitation robot [J]. Machine Design & Research, 2012, 28(3): 24-26 (in Chinese). [8]QUINTERO H A, FARRIS R J, GOLDFARB M. A method for the autonomous control of lower limb exoskeletons for persons with paraplegia [J]. Journal of Medical Devices, 2012, 6(4): 0410031-0410036. [9]PRASSLER E, BARONCELLI A. Team Re Walk ranked first in the cybathlon 2016 exoskeleton final [industrial activities] [J]. IEEE Robotics & Automation Magazine, 2017, 24(4): 8-10. [10]HARTIGAN C, KANDILAKIS C, DALLEY S, et al. Mobility outcomes following five training Sessions with a powered exoskeleton [J]. Topics in Spinal Cord Injury Rehabilitation, 2015, 21(2): 93-99. [11]HA K H, MURRAY S A, GOLDFARB M. An approach for the cooperative control of FES with a powered exoskeleton during level walking for persons with paraplegia [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24(4): 455-466. [12]MILIA P, DE SALVO F, CASERIO M, et al. Neurorehabilitation in paraplegic patients with an active powered exoskeleton (Ekso) [J]. Digital Medicine, 2016, 2(4): 163. [13]FARRIS D J, ROBERTSON B D, SAWICKI G S. Elastic ankle exoskeletons reducesoleus muscle force but not work in human hopping [J]. Journal of Applied Physiology, 2013, 115(5): 579-585. [14]HYUN D J, LIM H, PARK S, et al. Development of ankle-less active lower-limb exoskeleton controlled using finite leg function state machine [J]. International Journal of Precision Engineering and Manufacturing, 2017, 18(6): 803-811. [15] LI Z J, YUAN Y X, LUO L, et al. Hybrid brain/muscle signals powered wearable walking exoskeleton enhancing motor ability in climbing stairs activity [J]. IEEE Transactions on Medical Robotics and Bionics, 2019, 1(4): 218-227. [16]XIAO Y F, JI X J, WU H, et al. Bionic knee joint structure and motion analysis of a lower extremity exoskeleton [C]//2020 4th International Conference on Robotics and Automation Sciences. Wuhan, China: IEEE, 2020: 91-95. [17]MARTINEZ A, LAWSON B, GOLDFARB M. A velocity-based flow field control approach for reshaping movement of stroke-impaired individuals with a lowerlimb exoskeleton [C]//2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Honolulu, HI, USA: IEEE, 2018: 2797- 2800. [18]BOGUE R. Exoskeletons and robotic prosthetics: A review of recent developments [J]. Industrial Robot, 2009, 36(5): 421-427. [19]MARCHESCHI S, SALSEDO F, FONTANA M, et al. Body Extender: Whole body exoskeleton for human power augmentation [C]//2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011: 611-616. [20]GU C H, GAO M H, QIAN W X, et al. Gait recognition and robust autonomous location method of exoskeleton robot based on machine learning [C]//2019 4th International Conference on Control and Robotics Engineering. Nanjing, China: IEEE, 2019: 110-114. [21]ZHANG T, HUANG H. Design and control of a series elastic actuator with clutch for hip exoskeleton for precise assistive magnitude and timing control and improved mechanical safety [J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(5): 2215-2226. [22]SUZUKI K, MITO G, KAWAMOTO H, et al. Intention-based walking support for paraplegia patients with Robot Suit HAL [J]. Advanced Robotics, 2007, 21(12): 1441-1469. [23]HE Y, LI N, WANG C, et al. Development of a novel autonomous lower extremity exoskeleton robot for walking assistance [J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(3): 318-329. [24]LOUIE D R, ENG J J. Powered robotic exoskeletons in post-stroke rehabilitation of gait: A scoping review [J]. Journal of Neuroengineering and Rehabilitation, 2016, 13(1): 53. [25]TAMEZ-DUQUE J, COBIAN-UGALDE R, KILICARSLAN A, et al. Real-time strap pressure sensor system for powered exoskeletons [J]. Sensors, 2015, 15(2): 4550-4563. [26]ASBECK A T, SCHMIDT K, GALIANA I, et al. Multi-joint soft exosuit for gait assistance [C]//2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015: 6197-6204. [27]YU S N, LEE H D, LEE S H, et al. Design of an underactuated exoskeleton system for walking assist while load carrying [J]. Advanced Robotics, 2012, 26(5/6): 561-580. [28]KIM W, LEE H, KIM D, et al. Mechanical design of the Hanyang exoskeleton assistive robot (HEXAR) [C]//2014 14th International Conference on Control, Automation and Systems. Gyeonggi-do, Korea: IEEE, 2014: 479-484. [29]ZHOU S Z, CHEN Z, SONG W, et al. Design and gait realization of power-assisted lower limbs exoskeleton [C]//2019 IEEE International Conference on Cybernetics and Intelligent Systems and IEEE Conference on Robotics, Automation and Mechatronics. Bangkok, Thailand: IEEE, 2019: 101-106. [30]WANG L T, WANG S Q, VAN ASSELDONK E H F, et al. Actively controlled lateral gait assistance in a lower limb exoskeleton [C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan: IEEE, 2013: 965-970. [31]ZHOU M G, WANG H D, ZENG X Y, et al. A systematic analysis for the Global Burden of Disease Study 2017 [J]. Lancet, 2019, 394(10204): 1145-1158. [32]CAO H, LING Z Y, ZHU J, et al. Design frame of a leg exoskeleton for load-carrying augmentation [C]//2009 IEEE International Conference on Robotics and Biomimetics. Guilin, China: IEEE, 2009: 426-431. [33]SCHIELE A. Ergonomics of exoskeletons: Objective performance metrics [C]//World Haptics 2009 - Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Salt Lake City, UT, USA: IEEE, 2009: 103-108. [34]DING Y, GALIANA I, ASBECK A T, et al. Biomechanical and physiological evaluation of multi-joint assistance with softexosuits [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(2): 119-130. [35]YANG Z Y, GUI L H, ZHANG J, et al. Research status and development trend of energy-assisted exoskeleton suit [J]. Journal of Shandong University of Science and Technology (Natural Science), 2012, 31(5): 41-49 (in Chinese). [36]KOOPMAN B, VAN ASSELDONK E H F, VAN DER KOOIJ H. Speed-dependent reference joint trajectory generation for robotic gait support [J]. Journal of Biomechanics, 2014, 47(6): 1447-1458. [37]KIM M, LIU C, KIM J, et al. Bayesian optimization of softexosuits using a metabolic estimator stopping process [C]//2019 International Conference on Robotics and Automatio. Montreal, QC, Canada: IEEE, 2019: 9173-9179. [38]COLLINS S H, WIGGIN M B, SAWICKI G S. Reducing the energy cost of human walking using anunpowered exoskeleton [J]. Nature, 2015, 522(7555): 212-215. [39]WITTE K A, FATSCHEL A M, COLLINS S H. Design of a lightweight, tethered, torque-controlled knee exoskeleton [J]. IEEE International Conference on Rehabilitation Robotics. London, UK: IEEE, 2017: 1646- 1653. [40]WANG S Q, WANG L T, MEIJNEKE C, et al. Design and control of the MINDWALKER exoskeleton [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23(2): 277-286. [41]JAFARI A, TSAGARAKIS N G, VANDERBORGHT B, et al. A novel actuator with adjustable stiffness (AwAS) [C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, China: IEEE, 2010: 4201-4206. [42]MASUD N, SMITH C, ISAKSSON M. Disturbance observer based dynamic load torque compensator for assistive exoskeletons [J]. Mechatronics, 2018, 54: 78- 93. [43]MORENO J C, BRUNETTI F, NAVARRO E, et al. Analysis of the human interaction with a wearable lower-limb exoskeleton [J]. Applied Bionics and Biomechanics, 2009, 6(2): 245-256. [44]FARRIS R J, QUINTERO H A, GOLDFARB M. Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19(6): 652-659. [45]JIN X, PRADO A, AGRAWAL S K. Retraining of human gait: Are lightweight cable-driven leg exoskeleton designs effective? [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(4): 847-855. [46]ZHAO Y J, XU C, ZHANG J Z. Key technological analysis and study on exoskeleton of human-body lower limbs [J]. Journal of Machine Design, 2008, 25(10): 1-5 (in Chinese). [47]HAN J W. Development and application of electro-hydraulic servo-system [J]. Machine Tool & Hydraulics, 2012, 40(2): 7-10. [48]LI N, N L, AN H, al. Review on lower extremity exoskeleton robot [J]. The Open Automation and Control Systems Journal, 2015, 7(2): 441-453. [49]HONG Y P, KOO D, PARK J I, et al. The SoftGait: A simple and powerful weight-support device for walking and squatting [C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany: IEEE, 2015: 6336-6341. [50]GASPARRI G M, BAIR M O, LIBBY R P, et al. Verification of a robotic ankle exoskeleton control scheme for gait assistance in individuals with cerebral palsy [C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid, Spain: IEEE, 2018: 4673-4678. [51]MIYAZAKI T, TAGAMI T, MORISAKI D, et al. A motion control of soft gait assistive suit by gait phase detection using pressure information [J]. Applied Sciences, 2019, 9(14): 2869. [52]THAKUR C, OGAWA K, TSUJI T, et al. Soft wearable augmented walking suit with pneumatic gel muscles and stance phase detection system to assist gait [J]. IEEE Robotics and Automation Letters, 2018, 3(4): 4257-4264. [53]THATTE N, SHAH T, GEYER H. Robust and adaptive lower limb prosthesis stance control via extended Kalman filter-based gait phase estimation [J]. IEEE Robotics and Automation Letters, 2019, 4(4): 3129- 3136. [54]OUYANG X P, FAN B Q, DING S. Status and prospects of the lower extremity exoskeleton robots for human power augmentation [J]. Science & Technology Review, 2015, 33(23): 92-99. [55]GASPARRI G M, LUQUE J, LERNER Z F. Proportional joint-moment control for instantaneously adaptive ankle exoskeleton assistance [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(4): 751-759. [56]SCHMIDT K, RIENER R. MAXX: Mobility assisting textile exoskeleton that exploits neural control synergies [M]//Converging clinical and engineering research on neurorehabilitation II. Cham: Springer, 2016: 539- 543. [57]MATSUURA D, FUNATO R, OGATA M, et al. Efficiency improvement of walking assist machine using crutches based on gait-feasible region analysis [J]. Mechanism and Machine Theory, 2015, 84: 126-133. [58]GALLE S, DERAVE W, BOSSUYT F, et al. Exoskeleton plantarflexion assistance for elderly [J]. Gait & Posture, 2017, 52: 183-188. [59]AZEVEDO COSTE C, SIJOBERT B, FROGER J. FES-drop-foot correction: From pre-programmed patterns to online modulation [M]//Converging clinical and engineering research on neurorehabilitation II. Cham: Springer, 2016: 971-974. [60]LEE H, LEE B, KIM W, et al. Human-robot cooperative control based on pHRI (Physical Human-Robot Interaction) of exoskeleton robot for a human upper extremity [J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(6): 985-992. [61]SCZESNY-KAISER M, H¨ OFFKEN O, AACH M, et al. HAL exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients [J]. Journal of Neuroengineering and Rehabilitation, 2015, 12: 68. [62]LI M, MENG W, HU J W, et al. Adaptive sliding mode control of functional electrical stimulation (FES) for tracking knee joint movement [C]//2017 10th International Symposium on Computational Intelligence and Design. Hangzhou, China: IEEE, 2017: 346-349. [63]JIA S, HAN Y L, LU X L, et al. Design of lower extremity exoskeleton based on analysis on special human gaits [J]. Robot, 2014, 36(4): 392-401 (in Chinese). [64]CHEN G, CHAN C K, GUO Z, et al. A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy [J]. Critical Reviews in Biomedical Engineering, 2013, 41(4/5): 343-363. [65]LI J, ZHU L Y, GOU X F. Research on lower limbs exoskeleton rehabilitation robot and its key technologies [J]. Chinese Medical Equipment Journal, 2018, 9(8): 95-100. [66]SPAICH E G, B?G M F, ERKOCEVIC E, et al. Gaitorthosis lokomat combined with functional electrical stimulation for foot drop correction: A feasibility study [C]//Replace, Repair, Restore, Relieve: Bridging Clinical and Engineering Solutions in Neurorehabilitation. Cham: Springer, 2014: 751-757. [67]KWON S H, LEE B S, LEE H J, et al. Energy efficiency and patient satisfaction of gait with knee-anklefootorthosis and robot (ReWalk)-assisted gait in patients with spinal cord injury [J]. Annals of Rehabilitation Medicine, 2020, 44(2): 131-141. [68]SCZESNY-KAISER M, TROST R, AACH M, et al. A randomized and controlled crossover study investigating the improvement of walking and posture functions in chronic stroke patients using HAL exoskeleton: The HALESTRO study (HAL-exoskeleton STROke study) [J]. Frontiers in Neuroscience, 2019, 13: 259. [69]SCZESNY-KAISER M, KOWALEWSKI R, SCHILDHAUER T A, et al. Treadmill training with HAL exoskeleton — A novel approach for symptomatic therapy in patients with limb-girdle muscular dystrophy— Preliminary study [J]. Frontiers in Neuroscience, 2017, 11: 449. [70]DUAN Q C, HE D F, LIU B, et al. Establishment and analysis of lower extremity exoskeleton robot ergonomics restrictions model [J]. Machine Design and Manufacturing Engineering, 2015, 44(1): 50-53 (in Chinese). [71]SIVIY C, BAE J, BAKER L, et al. Offline assistance optimization of a softexosuit for augmenting ankle power of stroke survivors during walking [J]. IEEE Robotics and Automation Letters, 2020, 5(2): 828-835. [72]CHEN C J, ZHANG Y, LI Y J, et al. Iterative learning control for a soft exoskeleton with hip and knee joint assistance [J]. Sensors, 2020, 20(15): 4333. |
[1] | 马晓平, 廖欣, 陈兵. 电磁发射超高速制导炮弹国内外研究现状综述[J]. 空天防御, 2021, 4(2): 87-. |
[2] | 赵炜, 赵钱, 黄江流, 侯振乾, 杜泽弘. 临近空间太阳能无人机在现代战争中的应用[J]. 空天防御, 2020, 3(2): 85-90. |
[3] | 尹航, 郭谡, 温超然, 杨闯, 毕鹏. 美微型空射诱饵武器发展分析与应对策略[J]. 空天防御, 2019, 2(3): 84-. |
[4] | 曹莉, 耿斌斌, 周亮, 高森. 无人机集群发射与回收技术发展研究[J]. 空天防御, 2019, 2(2): 68-72. |
[5] | 刘杰, 孙全, 贾军. 无人艇防空装备设想及作战模式初探[J]. 空天防御, 2018, 1(2): 7-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||