J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (1): 16-28.doi: 10.1007/s12204-022-2452-3
陶璟1,2,周振欢1
接受日期:
2021-02-02
出版日期:
2024-01-24
发布日期:
2024-01-24
TAO Jing1,2 (陶璟), ZHOU Zhenhuan1(周振欢)
Accepted:
2021-02-02
Online:
2024-01-24
Published:
2024-01-24
摘要: 康复治疗和日常生活辅助对提高脑卒中、脊髓损伤、脑瘫、骨科术后病人以及老年人群等下肢运动障碍患者的生活质量有关键作用。下肢康复外骨骼机器人在以上人群康复治疗和生活辅助方面具有良好应用前景。本文针对面向多样化个性化用户需求的外骨骼机器人开发,首先分析并综述了下肢康复外骨骼机器人本体模块化、仿生柔顺驱动、个性化自适应步态规划以及面向个体的运动意图感知与推理方法和技术。进一步,基于服务化理论,探讨了面向个性化医疗的下肢康复外骨骼机器人产品服务系统开发潜力和关键支持技术。康复外骨骼今后研究趋势应是从个体化特征和个性化需求入手,以此驱动外骨骼机器人本体技术和服务化开发,从而技术上实现真正人机协同与融合,效用上实现可获得的高质量康复医疗和生活辅助。
中图分类号:
陶璟, 周振欢. 个性化下肢康复外骨骼机器人的关键技术综述[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 16-28.
TAO Jing, (陶璟), ZHOU Zhenhuan (周振欢). Review of Key Technologies for Developing Personalized Lower Limb Rehabilitative Exoskeleton Robots[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 16-28.
[1] LUAN C, LIU M. Comparison of prevalence of physical disabilities in year 2006 and 1987, in China [J]. Chinese Journal of Epidemiology, 2008, 29(7): 639-642(in Chinese). [2] HE B R, ZHENG B L. General research situation of standardized treatment and repair mechanism of spinal cord injury in China [J]. Chinese Journal of Trauma, 2020(4): 289-292 (in Chinese). [3] China Stroke Data Center. Report on stroke prevention and treatment in China in 2016. [EB/OL]. [2021-01-27]. https://service.chinasdc.cn/ healthcare/ topicanalysis report. [4] Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat. 2019 revision of world population prospects [EB/OL]. [2021-01-27]. https://population.un.org/wpp/. [5] The State Council of the People’s Republic of China. Opinions of the state council on the establishment of [EB/OL]. (2018-07-10). http:// www.gov.cn/ zhengce/ content/ 2018-07/ 10/ content 5305296.htm (in Chinese). [6] ZHAO M, HALEY D R, NOLIN J M, et al. Utilization, cost, payment, and patient satisfaction of rehabilitative services in Shandong, China [J]. Health Policy, 2009, 93(1): 21-26. [7] XIAO Y, ZHAO K, MA Z X, et al. Integrated medical rehabilitation delivery in China [J]. Chronic Diseases and Translational Medicine, 2017, 3(2): 75-81. [8] NOROUZI-GHEIDARI N, ARCHAMBAULT P S, FUNG J. Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: Systematic review and meta-analysis of the literature [J]. Journal of Rehabilitation Research and Development, 2012, 49(4): 479-496. [9]DUNDAR U, TOKTAS H, SOLAK O, et al. A comparative study of conventional physiotherapy versus robotic training combined with physiotherapy in patients with stroke [J]. Topics in Stroke Rehabilitation, 2014, 21(6): 453-461. [10]LERNER Z F, DAMIANO D L, BULEA T C. A lowerextremity exoskeleton improves knee extension in children with crouch gait from cerebral palsy [J]. Science Translational Medicine, 2017, 9(404): eaam9145. [11]WHITE H, HAYES S, WHITE M. The effect of using a powered exoskeleton training programme on joint range of motion on spinal injured individuals: A pilot study [J]. International Journal of Physical Therapy & Rehabilitation, 2015, 1(1): 102. [12]WAN D Q, XU Y M, BAI Y H, et al. Application of lower limb exoskeletons rehabilitation robots in rehabilitation treatment of activity limited knee joint [J]. Chinese Journal of Tissue Engineering Research, 2012, 16(4): 597-600 (in Chinese). [13]The State Council of the People’s Republic of China. Opinions of the state council on accelerating the development of rehabilitation assistive devices industry [EB/OL]. (2016-10-27). http://www.gov.cn/ zhengce/content/2016-10/27/content 5125001.htm (in Chinese). [14]ESQUENAZI A, TALATY M, JAYARAMAN A. Powered exoskeletons for walking assistance in persons with central nervous system injuries: A narrative review [J]. PM &R, 2017, 9(1): 46-62. [15]EKSOBIONICS. Ekso GT Robotic exoskeleton cleared by FDA for use with stroke and spinal cord injury patients [EB/OL]. [2021-01-27]. http://ir.eksobionics.com/ press-releases/ detail/570/ ekso-gt-roboticexoskeletoncleared-by-fda-for-use-with. [16]INDEGO. Introduction to indego personal [EB/OL]. [2021-01-27]. http://www.indego.com/ Indego/ ImageDownload?staticfile=/ Indego/ en/ Indego% 20Personal/ Indego% 20Personal% 20Data% 20Sheet.pdf. [17]CYBERDYNE. HAL for medical use (lower limb type) [EB/OL]. [2021-01-27]. http:// www.cyberdyne.jp/ english/ products/ LowerLimb medical.html. [18]WANG T, LEI J, WEI H, et al. Introduction of robot series standards – research progress of modular design of service robots and international standards [J]. Robot Technique and Application, 2014(4): 10-14 (in Chinese). [19]MEIJNEKE C, WANG S Q, SLUITER V, et al. Introducing a modular, personalized exoskeleton for ankle and knee support of individuals with a spinal cord injury [M]//Wearable robotics: Challenges and trends. Cham: Springer, 2016: 169-173. [20]CHEN H, YIN Y H. Modular design method for exoskeleton robot [J]. Machinery & Electronics, 2013, 31(6): 62-65 (in Chinese). [21]DOS SANTOS W M, NOGUEIRA S L, DE OLIVEIRA G C, et al. Design and evaluation of a modular lower limb exoskeleton for rehabilitation [C]//2017 International Conference on Rehabilitation Robotics. London, UK: IEEE, 2017: 447-451. [22]BARTENBACH V, GORT M, RIENER R. Concept and design of a modular lower limb exoskeleton [C]//2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics. Singapore: IEEE, 2016: 649-654. [23]SOUZA R S, SANFILIPPO F, SILVA J R, et al. Modular exoskeleton design: Requirement engineering with KAOS [C]//2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics. Singapore: IEEE, 2016: 978-983. [24]MIGLIORE S A, BROWN E A, DEWEERTH S P. Biologically inspired joint stiffness control [C]//2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain: IEEE, 2005: 4508-4513. [25]VANDERBORGHT B, VERRELST B, HAM R, et al. Development of a compliance controller to reduce energy consumption for bipedal robots [J]. Autonomous Robots, 2008, 24(4): 419-434. [26]JAFARI A, TSAGARAKIS N G, CALDWELL D G. A novel intrinsically energy efficient actuator with adjustable stiffness (AwAS) [J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(1): 355-365. [27]VENEMAN J F, EKKELENKAMP R, KRUIDHOF R, et al. A series elastic- and bowden-cable-based actuation system for use as torque actuator in exoskeletontype robots [J]. The International Journal of Robotics Research, 2006, 25(3): 261-281. [28]ZHANG C, LIU G F, LI C L, et al. Development of a lower limb rehabilitation exoskeleton based on real-time gait detection and gait tracking [J]. Advances in Mechanical Engineering, 2016, 8(1): 168781401562798. [29]RAHMAN S M M, IKEURA R. A novel variable impedance compact compliant ankle robot for overground gait rehabilitation and assistance [J]. Procedia Engineering, 2012, 41: 522-531. [30]HAN Y L, WU Z Y, XU Y X, et al. The knee exoskeleton mechanical leg based on multi-modal elastic actuator [J]. Robot, 2017, 39(4): 498-504 (in Chinese). [31]STEGER R, KIM S H, KAZEROONI H. Control scheme and networked control architecture for the Berkeley lower extremity exoskeleton (BLEEX) [C]//2006 IEEE International Conference on Robotics and Automation. Orlando, FL, USA: IEEE, 2006: 3469-3476. [32]LEE S, SANKAI Y. Power assist control for walking aid with HAL-3 based on EMG and impedance adjustment around knee joint [C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Lausanne, Switzerland: IEEE, 2002: 1499-1504. [33]HAYASHI T, KAWAMOTO H, SANKAI Y. Control method of robot suit HAL working as operator’s muscle using biological and dynamical information [C]//2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Canada: IEEE, 2005: 3063-3068. [34]KARAVAS N, AJOUDANI A, TSAGARAKIS N, et al. Tele-impedance based assistive control for a compliant knee exoskeleton [J]. Robotics and Autonomous Systems, 2015, 73: 78-90. [35]HUO W G, MOHAMMED S, AMIRAT Y, et al. Active Impedance Control of a lower limb exoskeleton to assist sit-to-stand movement [C]//2016 IEEE International Conference on Robotics and Automation. Stockholm: IEEE, 2016: 3530-3536. [36]XU G Z, SONG A G, LI H J. Fuzzy-based adaptive impedance control for upper-limb rehabilitation robot [J]. Journal of Southeast University (Natural Science Edition), 2009, 39(1): 156-160 (in Chinese). [37]BEYL P, VAN DAMME M, CHERELLE P, et al. Safe and compliant guidance in robot-assisted gait rehabilitation using proxy-based sliding mode control [C]//2009 IEEE International Conference on Rehabilitation Robotics. Kyoto, Japan: IEEE, 2009: 277-282. [38]TALATY M, ESQUENAZI A, BRICENO J E. Differentiating ability in users of the ReWalkTM powered exoskeleton: An analysis of walking kinematics [C]//2013 IEEE 13th International Conference on Rehabilitation Robotics. Seattle, WA, USA: IEEE, 2013: 1-5. [39]WANG P, LOW K H, MCGREGOR A H. A subjectbased motion generation model with adjustable walking pattern for a gait robotic trainer: NaTUre-gaits [C]//2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, CA, USA: IEEE, 2011: 1743-1748. [40]DEHGHANI R, FATTAH A, ABEDI E. Cyclic gait planning and control of a five-link biped robot with four actuators during single support and double support phases [J]. Multibody System Dynamics, 2015, 33(4): 389-411. [41]UGURLU B, OSHIMA H, NARIKIYO T. Lower body exoskeleton-supported compliant bipedal walking for paraplegics: How to reduce upper body effort? [C]//2014 IEEE International Conference on Robotics and Automation. Hong Kong, China: IEEE, 2014: 1354-1360. [42]KAGAWA T, ISHIKAWA H, KATO T, et al. Optimization-based motion planning in joint space for walking assistance with wearable robot [J]. IEEE Transactions on Robotics, 2015, 31(2): 415-424. [43]LIU G L, HABIB M K, WATANABE K, et al. Central pattern generators based on Matsuoka oscillators for the locomotion of biped robots [J]. Artificial Life and Robotics, 2008, 12(1/2): 264-269. [44]LIM H B, LUU T P, HOON K H, et al. Natural gait parameters prediction for gait rehabilitation via artificial neural network [C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, China: IEEE, 2010: 5398-5403. [45]LI J. Research on gait strategies and gait planning of exoskeleton for hemiplegia patients [D]. Shanghai, China: Shanghai University, 2017 (in Chinese). [46]DUSCHAU-WICKE A, VON ZITZEWITZ J, CAPREZ A, et al. Path control: A method for patient-cooperative robot-aided gait rehabilitation [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18(1): 38-48. [47]DUSCHAU-WICKE A, CAPREZ A, RIENER R. Patient-cooperative control increases active participation of individuals with SCI during robot-aided gait training [J]. Journal of Neuroengineering and Rehabilitation, 2010, 7: 43. [48]LUU T P, LOW K H, QU X D, et al. An individualspecific gait pattern prediction model based on generalized regression neural networks [J]. Gait & Posture, 2014, 39(1): 443-448. [49]TUCKER M, NOVOSELLER E, KANN C, et al. Preference-based learning for exoskeleton gait optimization [C]//2020 IEEE International Conference on Robotics and Automation. Paris, France: IEEE, 2020: 2351-2357. [50]LIU D X. Research on multimodal fusion-based control strategy for lower-limb exoskeleton robot [D]. Shenzhen, China: University of Chinese Academy of Science (Shenzhen Institutes of Advanced Technology), 2018 (in Chinese). [51]CHEN J T. Research of body size adaptive gait for lower limb exoskeleton for hemiplegic rehabilitation [D]. Chengdu, China: University of Electronic Science and Technology of China, 2020 (in Chinese). [52]ZHAO X G, TAN X W, ZHANG B. Development of soft lower extremity exoskeleton and its key technologies: A survey [J]. Robot, 2020, 42(3): 365-384 (in Chinese). [53]DJURIC M. Automatic recognition of gait phases from accelerations of leg segments [C]//2008 9th Symposium on Neural Network Applications in Electrical Engineering. Belgrade, Serbia: IEEE, 2008: 121-124. [54]LI Y D, HSIAO-WECKSLER E T. Gait mode recognition and control for a portable-powered ankle-foot orthosis [C]//2013 13th International Conference on Rehabilitation Robotics. Seattle, WA, USA: IEEE, 2013: 1-8. [55]SONG P, MO X M, DENG Y P, et al. Exoskeleton gait recognition method based on the proportional normalized threshold [J]. Journal of Gun Launch & Control, 2018, 39(2): 81-85 (in Chinese). [56]ZHAO Z Y, MA L, SUN Y K. Recognition of gait phase using plantar pressure sensors [J]. Electronic Measurement Technology, 2019, 42(13): 26-31 (in Chinese). [57]QUINTERO H A, FARRIS R J, GOLDFARB M. A method for the autonomous control of lower limb exoskeletons for persons with paraplegia [J]. Journal of Medical Devices, 2012, 6(4): 041003. [58]KASAOKA K, SANKAI Y. Predictive control estimating operator’s intention for stepping-up motion by exo-skeleton type power assist system HAL [C]//2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Maui, HI, USA: IEEE, 2001: 1578-1583. [59]KAWABATA T, SATOH H, SANKAI Y. Working posture control of Robot Suit HAL for reducing structural stress [C]//2009 IEEE International Conference on Robotics and Biomimetics. Guilin, China: IEEE, 2009: 2013-2018. [60]WANG S Q, WANG L T, MEIJNEKE C, et al. Design and control of the MINDWALKER exoskeleton [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23(2): 277-286. [61]DING Y, PANIZZOLO F A, SIVIY C, et al. Effect of timing of hip extension assistance during loaded walking with a soft exosuit [J]. Journal of Neuroengineering and Rehabilitation, 2016, 13(1): 87. [62]DING Y, GALIANA I, SIVIY C, et al. IMU-based iterative control for hip extension assistance with a soft exosuit [C]//2016 IEEE International Conference on Robotics and Automation. Stockholm, Sweden: IEEE, 2016: 3501-3508. [63]AGUIRRE-OLLINGER G. Learning muscle activation patterns via nonlinear oscillators: Application to lower-limb assistance [C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan: IEEE, 2013: 1182-1189. [64]XI X G, WU H, ZUO J, et al. EMG fall recognition based on permutation entropy and WKFDA [J]. Journal of Shanghai Jiao Tong University, 2015, 49(11): 1685-1689 (in Chinese). [65]LIU J, ZHOU P. A novel myoelectric pattern recognition strategy for hand function restoration after incomplete cervical spinal cord injury [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21(1): 96-103. [66]YANG D P, ZHAO J D, JIANG L, et al. Study on recognition of multi-mode hand gestures based on myoelectric signal [J]. Journal of Shanghai Jiao Tong University, 2009, 43(7): 1071-1075 (in Chinese). [67]JIANG M, WANG Z L, LIU X B, et al. Research on human daily activity recognition method based on BSN and CHMMs [J]. Journal of Dalian University of Technology, 2013, 53(1): 121-126 (in Chinese). [68]KILICARSLAN A, GROSSMAN R G, CONTRERASVIDAL J L. A robust adaptive denoising framework for real-time artifact removal in scalp EEG measurements [J]. Journal of Neural Engineering, 2016, 13(2): 026013. [69]KILICARSLAN A, PRASAD S, GROSSMAN R G, et al. High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton [C]//2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Osaka, Japan: IEEE, 2013: 5606-5609. [70] YOUNG A J, KUIKEN T A, HARGROVE L J. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses [J]. Journal of Neural Engineering, 2014, 11(5): 056021. [71] ZHANG Y H, PRASAD S, KILICARSLAN A, et al. Multiple kernel based region importance learning for neural classification of gait states from EEG signals [J]. Frontiers in Neuroscience, 2017, 11: 170. [72] FLEISCHER C, HOMMEL G. A human-exoskeleton interface utilizing electromyography [J]. IEEE Transactions on Robotics, 2008, 24(4): 872-882. [73] ZHANG F, LI P F, HOU Z G, et al. sEMG-based continuous estimation of joint angles of human legs by using BP neural network [J]. Neurocomputing, 2012, 78(1): 139-148. [74] HUANG Y C, HE Z X, LIU Y X, et al. Real-time intended knee joint motion prediction by deep-recurrent neural networks [J]. IEEE Sensors Journal, 2019, 19(23): 11503-11509. [75] WANG F, WEI X T, QIN H. Estimation of lower limb continuous movements based on sEMG and LSTM [J]. Journal of Northeastern University (Natural Science), 2020, 41(3): 305-310 (in Chinese). [76] DING Q C, XIONG A B, ZHAO X G, et al. A review on researches and applications of sEMG-based motion intent recognition methods [J]. Acta Automatica Sinica, 2016, 42(1): 13-25 (in Chinese). [77] DUAN Y K,CHEN X G, GUI J, et al. Continuous kinematics prediction of lower limbs based on phase division [J]. Journal of Zhejiang University (Engineering Science), 2021, 55(1): 89-95 (in Chinese). [78] TUKKER A, TISCHNER U. Product-services as a research field: Past, present and future. Reflections from a decade of research [J]. Journal of Cleaner Production, 2006, 14(17): 1552-1556. [79] [80] HAASE R P, PIGOSSO D C A, MCALOONE T C. Product/service-system origins and trajectories: A systematic literature review of PSS definitions and their characteristics [J]. Procedia CIRP, 2017, 64: 157- 162. [80] TAO J, YU S R. Developing conceptual PSS models of upper limb exoskeleton based post-stroke rehabilitation in China [J]. Procedia CIRP, 2019, 80: 750-755. [81] TAO J, YU S R. Service design of rehabilitative exoskeleton for sustainable value creation: A case study of stroke rehabilitation in China [M]//Ecodesign and sustainability I. Singapore: Springer Singapore, 2020: 59-70. [82] JIANG G Q. Application design and development prospect of home medical equipment [J]. China Medical Device Information, 2018, 24(3): 43-44 (in Chinese). [83] ZHENG H R, DAVIES R, ZHOU H Y, et al. SMART project: Application of emerging information and communication technology to home-based rehabilitation for stroke patients [J]. International Journal on Disability and Human Development, 2006, 5(3): 271-276. [84] WU F, YIN Y H. Design of remote information system for lower limb rehabilitation robots based on GSM [J]. Machinery & Electronics, 2014, 32(7): 78-80 (in Chinese). [85] CHEN D. Research on mobile terminal module of exoskeleton condition monitoring system [D]. Shanghai, China: East China University of science and technology, 2019 (in Chinese). [86] LI J Q. Research on exoskeleton remote rehabilitation system based on virtual reality technology [J]. Machine Design and Research, 2011, 27(4): 35-38 (in Chinese). [87] LI Z. Design of upper limb rehabilitation exoskeleton and research on inter-cloud system [D]. Zibo, China: Shandong University of Technology, 2019 (in Chinese). |
[1] | 赵玲玲1,郭遥2. 中国康复和辅助机器人的发展:困境与解决方案[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 382-390. |
[2] | 赵雷雷,于曰伟,周长城,杨福兴. 路面随机激励下康复机器人轮椅的抑振解析[J]. 上海交通大学学报, 2019, 53(12): 1502-1507. |
[3] | 王依晴a,谢叻a,b,洪武洲b. 腕部康复机器人助动训练的力反馈控制[J]. 上海交通大学学报(自然版), 2018, 52(1): 70-75. |
[4] | 刘园1,张在房1,姚迪2,褚学宁3. 基于多目标离散粒子群的产品服务系统方案配置规则提取[J]. 上海交通大学学报(自然版), 2015, 49(08): 1123-1130. |
[5] | 贾耀锋, 苗瑞, 曹金涛, 王丽亚, 江志斌. 基于博弈论的制造企业开展全生命周期服务的策略研究 [J]. 上海交通大学学报(自然版), 2012, 46(12): 1989-1993. |
[6] | 林海平,檀晓红,申瑞民. 基于知识结构图的个性化学习内容生成算法[J]. 上海交通大学学报(自然版), 2010, 44(03): 418-0422. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||