J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (3): 417-424.doi: 10.1007/s12204-025-2808-6
• • 下一篇
收稿日期:
2024-06-05
接受日期:
2024-10-08
出版日期:
2025-06-06
发布日期:
2025-06-06
秦伟1,王殊轶1,陈学瑜2,庄一唯1,沈亦纯1,申雨涵1
Received:
2024-06-05
Accepted:
2024-10-08
Online:
2025-06-06
Published:
2025-06-06
摘要: 胸腔闭式引流术在临床中可以利用带针胸管进行胸腔积液或积气的治疗,但目前手术中的穿刺过程是不可视的,存在手术失败的风险。因此,有必要设计一套具有可视功能的胸腔闭式引流穿刺可视化系统。增强现实(AR)技术可以辅助看到患者体内的解剖结构并确定体表插入点,我们还对目前使用的带针胸管进行了结构改进,通过嵌入超细径摄像头实现穿刺过程中的实时可视化。进行了模拟实验,测量了AR方法的总体配准误差范围在(3.59±0.53) mm,这表明其具有临床应用的潜力。超细径摄像头模组和改进的带针胸管可以及时反映针尖在人体内的位置。通过对比实验发现,与传统方法相比,视频引导可以提高穿刺过程的安全性。最后,通过问卷测试对系统的可用性进行了定性评估。本系统有助于实现胸腔闭式引流穿刺操作的可视化,为提高操作步骤的准确性和安全性提供了实施方案,此方法有利于缩短学习曲线,提高医生的熟练程度。
中图分类号:
. 基于增强现实和超细径摄像头的胸腔闭式引流穿刺可视化系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 417-424.
Qin Wei, Wang Shuyi, Chen Xueyu, Zhuang Yiwei, Shen Yichun, Shen Yuhán. Visualization System for Closed Thoracic Drainage Puncture Based on Augmented Reality and Ultrafine Diameter Camera[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 417-424.
[1] DESIMONAS N, TSIAMIS C, SGANTZOS M. The innovated “closed chest drainage system” of William smoult playfair (1871) [J]. Surgical Innovation, 2019, 26(6): 760-762. [2] KIM M J, PARK I, PARK J M, et al. Systematic review and meta-analysis of initial management of pneumothorax in adults: Intercostal tube drainage versus other invasive methods [J]. PLoS One, 2017, 12(6): e0178802. [3] MCELNAY P J, LIM E. Modern techniques to insert chest drains [J]. Thoracic Surgery Clinics, 2017, 27(1): 29-34. [4] LAAN D, DIEM VU T N, HERNANDEZ M, et al. Magnetic chest tube positioning system [J]. Journal of Medical Devices, 2018, 12(2): 025001. [5] LIU X Y, YIN M L, HUANG J, et al. A design and application method of the thoracic puncture cannula [J]. Chinese Critical Care Medicine, 2021, 33(12): 1511-1513 (in Chinese). [6] LEE Y J, CHOI H J, LIM T H, et al. The development and experimental application of a new thoracostomy trocar [J]. The American Journal of Emergency Medicine, 2016, 34(5): 917-920. [7] GRAY E J, BETCHER J A, HUANG R D, et al. 366 point-of-care ultrasound for identifying safe tube thoracostomy insertion sites [J]. Annals of Emergency Medicine, 2017, 70(4): S144. [8] LIU S Y, ZHAO F, LI Q, et al. Vacuum negative pressure drainage of pleural effusion by ultrasound-guided thoracentesis and central venous catheterization [J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2020, 17(12): 1241-1245 (in Chinese). [9] CAO J Y, HAN H, JIN Y J, et al. High frequency ultrasound-guided catheter drainage of pleural effusion [J]. Chinese Journal of Interventional Imaging and Therapy. 2021, 18(3): 187-189 (in Chinese). [10] WOLF J, WOLFER V, HALBE M, et al. Comparing the effectiveness of augmented reality-based and conventional instructions during single ECMO cannulation training [J]. International Journal of Computer Assisted Radiology and Surgery, 2021, 16(7): 1171-1180. [11] RAHMAN R, WOOD M E, QIAN L, et al. Head-mounted display use in surgery: A systematic review [J]. Surgical Innovation, 2020, 27(1): 88-100. [12] YU J Q, WANG S Y, WANG Y Q, et al. Novel visualization tool for percutaneous renal puncture training using augmented reality technology [J]. Journal of Shanghai Jiao Tong University (Science), 2023, 28(4): 517-525. [13] OKACHI S, SAKURAI M, MATSUI T, et al. The application of mixed reality in bronchoscopy simulation training: A feasibility study [J]. Surgical Innovation, 2023, 30(5): 685-686. [14] ZHOU J, ZHAO Z C, CHEN X H, et al. Single-use video endoscope for vertebral pedicle puncture [C]//Eighth Symposium on Novel Photoelectronic Detection Technology and Applications. Kunming: SPIE, 2022: 1835-1846. [15] QU J L, JIN K, WANG M, et al. Real-time stripe noise removal method for endoscope image [C]//2021 IEEE 4th International Conference on Electronics Technology. Chengdu: IEEE, 2021: 865-870. [16] WANG Q, WEBSTER T J. Nanostructured selenium for preventing biofilm formation on polycarbonate medical devices [J]. Journal of Biomedical Materials Research Part A, 2012, 100A(12): 3205-3210. [17] JIANG T R, ZHU M, ZAN T, et al. A novel augmented reality-based navigation system in perforator flap transplantation - A feasibility study [J]. Annals of Plastic Surgery, 2017, 79(2): 192-196. [18] SHAO L, YANG S, FU T Y, et al. Augmented reality calibration using feature triangulation iteration-based registration for surgical navigation [J]. Computers in Biology and Medicine, 2022, 148: 105826. [19] TAGHIAN A, ABO-ZAHHAD M, SAYED M S, et al. Virtual and augmented reality in biomedical engineering [J]. Biomedical Engineering Online, 2023, 22(1): 76. [20] SCHERL C, STRATEMEIER J, KARLE C, et al. Augmented reality with HoloLens in parotid surgery: How to assess and to improve accuracy [J]. European Archives of Oto-Rhino-Laryngology, 2021, 278(7): 2473-2483. [21] LI Y Q. Clinical effect of thoracic catheter with trocar in the treatment of traumatic hemopneumothorax [J]. Clinical Research and Practice, 2019, 4(25): 88-90 (in Chinese). [22] PORCEL J M. Chest tube drainage of the pleural space: A concise review for pulmonologists [J]. Tuberculosis and Respiratory Diseases, 2018, 81(2): 106-115. [23] GONZÁLEZ IZARD S, SÁNCHEZ TORRES R, ALONSO PLAZA Ó, et al. Nextmed: Automatic imaging segmentation, 3D reconstruction, and 3D model visualization platform using augmented and virtual reality [J]. Sensors, 2020, 20(10): 2962. [24] ZACCARDI S, FRANTZ T, BECKWÉE D, et al. On-device execution of deep learning models on HoloLens2 for real-time augmented reality medical applications [J]. Sensors, 2023, 23(21): 8698. [25] ANDREWS C M, HENRY A B, SORIANO I M, et al. Registration techniques for clinical applications of three-dimensional augmented reality devices [J]. IEEE Journal of Translational Engineering in Health and Medicine, 2020, 9: 4900214. [26] BIAN M, SHI W, YANG X. Development of portable digital intelligent thoracic drainage system [J]. China Medical Devices, 2023, 38(6): 43-49 (in Chinese). |
[1] | 傅航1,许江长 1,李寅炜2,4,周慧芳2,4,陈晓军1,3. 基于视频图像增强现实的视神经管减压手术导航系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 34-42. |
[2] | 孔会扬1, 王殊轶1, 张璨2, 陈赞2, 3. 手术导板辅助增强现实技术与传统技术在椎弓根螺钉放置中的比较[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 10-17. |
[3] | 邓玉欣1,陈泽众1,汪洋1,杜文杰2,毛碧飞3,梁智章3,林秋诗3,李静辉3. 基于推导树模型的软件可信性推理[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 579-587. |
[4] | 周东荣, 陈世海, 蒋哲, 严赛男, 闫瑞海, 高宇. 无人机实景三维建模在“长江口二号”古船整体迁移与保护项目中的应用[J]. 上海交通大学学报, 2023, 57(S1): 20-24. |
[5] | 于佳琪1,王殊轶1,王浴屺1,谢华2,吴张檑1,付小妮1,马邦峰1. 基于增强现实技术的新型经皮肾穿刺训练可视化工具[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 517-. |
[6] | 刘秀丽, 徐小力. 基于特征金字塔卷积循环神经网络的故障诊断方法[J]. 上海交通大学学报, 2022, 56(2): 182-190. |
[7] | 李勇, 张梦骏, 仇栋, 范云锋, 苏智勇, 邱令存. 数据驱动的指控系统增强现实电子沙盘设计与开发[J]. 空天防御, 2021, 4(2): 27-33. |
[8] | 李艳红, 唐成师, 赵吕懿, 胡启鹏, 柴娟芳, 姚新宇. 复杂系统实时仿真的可视化建模方法研究[J]. 空天防御, 2020, 3(4): 30-37. |
[9] | 邓念晨,杨旭波. 光学透视增强现实眼镜研究热点[J]. 上海交通大学学报(自然版), 2018, 52(10): 1255-1266. |
[10] | 张晔,贾雨葶,傅洛伊,王新兵. AceMap学术地图与AceKG学术知识图谱——学术数据可视化[J]. 上海交通大学学报(自然版), 2018, 52(10): 1357-1362. |
[11] | 王月,张树生,何卫平,白晓亮. 基于模型的增强现实无标识三维注册追踪方法[J]. 上海交通大学学报(自然版), 2018, 52(1): 83-89. |
[12] | 雷进宇1,2,3,初秀民1,2,何伟4,周映萍1,2. 桥区船舶交通流可视分析系统[J]. 上海交通大学学报(自然版), 2017, 51(7): 840-845. |
[13] | 曾凡云, 李明广, 陈锦剑, 王建华. 基坑群监测数据与施工信息动态同步分析系统的开发与应用[J]. 上海交通大学学报, 2017, 51(03): 269-276. |
[14] | 黄健康a,何笑英a,张刚b,石玗b,樊丁b. 钨极惰性气体保护焊熔池表面三维恢复算法及其可视化[J]. 上海交通大学学报(自然版), 2015, 49(03): 337-340. |
[15] | 郭强1,梁志伟2. 沉管浮运检测和监测系统构建[J]. 上海交通大学学报(自然版), 2013, 47(10): 1606-1610. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 27
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 83
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||