J Shanghai Jiaotong Univ Sci ›› 2022, Vol. 27 ›› Issue (4): 521-527.doi: 10.1007/s12204-022-2410-0
所属专题: 生物力学
收稿日期:
2021-10-09
出版日期:
2022-07-28
发布日期:
2022-08-11
WU Li ∗ (武 力), HUANG Wei (黄 伟), LI Xuetao (李学涛)
Received:
2021-10-09
Online:
2022-07-28
Published:
2022-08-11
中图分类号:
. [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 521-527.
WU Li ∗ (武 力), HUANG Wei (黄 伟), LI Xuetao (李学涛). Personalized Design Method of Bionic Bone Scaffold with Voronoi Spacial Architecture[J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 521-527.
[1] | YOO D. New paradigms in internal architecture design and freeform fabrication of tissue engineering poroussc affolds [J]. Medical Engineering and Physics, 2012,34(6): 762-776. |
[2] | EGAN P F, GONELLA V C, ENGENSPERGER M,et al. Computationally designed lattices with tuned properties for tissue engineering using 3D printing [J].PLoS One, 2017, 12(8): e0182902. |
[3] | KAPFER S C, HYDE S T, MECKE K, et al. Mini-mal surface scaffold designs for tissue engineering[J].Biomaterials, 2011, 32(29): 6875-6882. |
[4] | ZHU L Y, LI L, LI Z A, et al. Design and biomechanical characteristics of porous meniscal implant structures using triply periodic minimal surfaces [J]. Journal of Translational Medicine, 2019, 17(1): 89. |
[5] | W ANG Z, HUANG C, W ANG J, et al. Design and simulation of flow field for bone tissue engineering scaffold based on triply periodic minimal surface[J]. Chinese Journal of Mechanical Engineering, 2019, 32(1): 19. |
[6] | ZHANG Z Y, ZHAO K, LI Y S, et al. Porous structure design method of bone scaffold based on voxel and triple cycle minimal surfaces [J]. Computer Integrated Manufacturing Systems, 2020, 26(3): 697-706 (in Chinese). |
[ 7 ] | F E N G J , F U J , S H A N G C , e t a l . P o r o u s s c a ffold de-sign by solid T-splines and triply periodic minimal sur-faces [J]. Computer Methods in Applied Mechanics and Engineering, 2018, 336(7): 333-352. |
[8] | AHMADI S M, YA V ARI S A, W AUTHLE R, et al.Additively manufactured open-cell porous biomaterials made from six different space-filling unit cells: Themechanical and morphological properties [J]. Materials(Basel), 2015, 8(4): 1871-1896. |
[9] | KANTAROS A, CHATZIDAI N, KARALEKAS D.3D printing-assisted design of scaffold structures [J].The International Journal of Advanced Manufacturing Technology, 2016, 82(1/2/3/4): 559-571. |
[10] | ZHAO L, PEI X, JIANG L, et al. Bionic design and 3Dprinting of porous titanium alloy scaffolds for bone tis-sue repair [J]. Composites Part B:Engineering, 2019,162(4): 154-161. |
[11] | W ANG L, CHEN Q, YARLAGADDA P K D V, etal. Single-parameter mechanical design of a 3D-printedoctet truss topological scaffold to match natural cancellous bones [J]. Materials & Design, 2021, 209(11):109986. |
[12] | SHIRZAD M, ZOLF AGHARIAN A, MATBOUEI A,et al. Design, evaluation, and optimization of 3Dprinted truss scaffolds for bone tissue engineering [J].Journal of the Mechanical Behavior of Biomedical Materials, 2021, 120(5): 104594. |
[13] | ZHANG X, TANG L, LIU Z, et al. Yield properties of closed-cell aluminum foam under triaxial loadings bya 3D Voronoi model [J]. Mechanics of Materials, 2017,104(1): 73-84. |
[14] | CHEN H, LIU Y, W ANG C, et al. Design and properties of biomimetic irregular scaffolds for bone tissue engineering [J]. Computers in Biology and Medicine,2021, 130(3): 104241. |
[15] | W ANG G, SHEN L, ZHAO J, et al. Design and com-pressive behavior of controllable irregular porous scaffolds: Based on voronoi-tessellation and for additive manufacturing [J]. ACS Biomaterials Science & Engineering, 2018, 4(2): 719-727. |
[16] | KARAGEORGIOU V, KAPLAN D. Porosity of 3Dbiomaterial scaffolds and osteogenesis [J]. Biomaterials, 2005, 26(27): 5474-5491. |
[17] | SEVILLA P, APARICIO C, PLANELL J A, et al.Comparison of the mechanical properties between tantalum and nickel-titanium foams implant materials fobone ingrowth applications[J]. Journal of Alloys and Compounds, 2007, 439(1/2): 67-73. |
[1] | . 特发性脊柱侧后凸的动态响应[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 482-492. |
[2] | . 基于毫米波雷达的智能心率提取方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 493-498. |
[3] | . 基于呼气末二氧化碳感知的气管插管方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 582-590. |
[4] | . 基于增强现实和超细径摄像头的胸腔闭式引流穿刺可视化系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 417-424. |
[5] | . 近红外胶囊机器人无线能量接收线圈优化设计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 425-432. |
[6] | . 基于Voronoi Tessellation开发的径向梯度骨支架的机械和渗透性能研究[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 433-445. |
[7] | 傅航1,许江长 1,李寅炜2,4,周慧芳2,4,陈晓军1,3. 基于视频图像增强现实的视神经管减压手术导航系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 34-42. |
[8] | 周涵巍1,朱心平1,马有为2,王坤东1. 低延时纤维胆道镜机器人驱动控制系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 43-52. |
[9] | 詹何庆1,韩贵来1,魏传安1,李治群2. 人工智能结合磁共振成像和计算建模在心脏电生理与临床诊断中的应用[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 53-65. |
[10] | 刘玉川1,李浩1,唐宇龙1,梁杜娟2,谭佳3,符玥1,李勇明4. 基于互信息-支持向量回归的阿尔兹海默症磁共振影像脑年龄检测[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 130-135. |
[11] | 叶鹏,富荣昌,王召耀. 不同节段的颈椎前路椎间盘切除和融合术中植入Cage-Plate或Zero-P融合器系统后相邻节段生物力学分析[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 166-174. |
[12] | 贺贵松,黄学功,李峰. 基于主被动联合驱动的助力型踝关节外骨骼机器人的协调性设计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 197-208. |
[13] | 徐杨, 李万万. 短波红外时间分辨成像研究进展[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 29-36. |
[14] | 李明爱1,2,3,许冬芹1. 综述:运动想像脑机接口中的迁移学习[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 37-59. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||