[1] ZHANG X L, TIAN Y L, ZHANG C, et al. Nearinfrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer’s disease [J]. Proceedings of the Nationl Academy of Sciences of the United States of America, 2015, 112(31): 9734-9739.
[2] CAI Y, WEI Z, SONG C H, et al. Optical nano-agents in the second near-infrared window for biomedical applications [J]. Chemical Society Reviews, 2019, 48(1):
22-37.
[3] BASHKATOV A N, GENINA E A, KOCHUBEY V I, et al. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm [J]. Journal of Physics D: Applied Physics, 2005, 38(15): 2543-2555.
[4] SMITH A M, MANCINI M C, NIE S. Bioimaging: Second window for in vivo imaging [J]. Nature Nanotechnology, 2009, 4(11): 710-711.
[5] BRUNS O T, BISCHOF T S, HARRIS D K, et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots [J]. Nature Biomedical Engineering, 2017, 1: 56.
[6] ZHONG Y T, DAI H J. A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of biological systems [J]. Nano Research, 2020, 13(5): 1281-1294.
[7] ROBINSON J T, HONG G S, LIANG Y Y, et al. In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake [J]. Journal of the American Chemical Society, 2012, 134(25): 10664-10669.
[8] PEI P, CHEN Y, SUN C X, et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging [J]. Nature Nanotechnology, 2021, 16(9): 1011-1018.
[9] TAO Z M, HONG G S, SHINJI C, et al. Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1 000 nm [J]. Angewandte Chemie International Edition, 2013, 52(49): 13002-13006.
[10] HONG G S, ZOU Y P, ANTARIS A L, et al. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window [J]. Nature Communications, 2014, 5: 4206.
[11] FAN Y, ZHANG F. A new generation of NIR-II probes: Lanthanide-based nanocrystals for bioimaging and biosensing [J]. Advanced Optical Materials, 2019, 7(7): 1801417.
[12] LU Y Q, ZHAO J B, ZHANG R, et al. Tunable lifetime multiplexing using luminescent nanocrystals [J]. Nature Photonics, 2014, 8(1): 32-36.
[13] LIU L X, QU J L, LIN Z Y, et al. Fluorescence lifetime imaging and its biomedical applications[J]. Journal of Shenzhen University (Science and Engineering), 2005, 22(2): 133-141 (in Chinese).
[14] BOTCHWAY S W, CHARNLEY M, HAYCOCK J W, et al. Time-resolved and two-photon emission imaging microscopy of live cells with inert platinum complexes [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(42): 16071-16076.
[15] EDA H, ODA I, ITO Y, et al. Multichannel timeresolved optical tomographic imaging system [J]. Review of Scientific Instruments, 1999, 70(9): 3595-3602.
[16] LIU X B, LIN D Y, WU Q Q, et al. Recent progress of fluorescence lifetime imaging microscopy technology and its application [J]. Acta Physica Sinica, 2018, 67(17): 27-40(in Chinese).
[17] LIU L X, QI M J, GAO P, et al. Application of fluorescence lifetime imaging in cancer diagnosis (invited) [J]. Acta Photonica Sinica, 2021, 50(10): 269-291 (in
Chinese).
[18] WANG X, HAN X J, CHEN G Y. Time-resolved imaging using lanthanide-doped nanomaterials [J]. Chinese Journal of Luminescence, 2020, 41(9): 1045-1057 (in Chinese).
[19] DEL ROSAL B, ORTGIES D H, FERN′ ANDEZ N, et al. Overcoming autofluorescence: Long-lifetime infrared nanoparticles for time-gated in vivo imaging [J]. Advanced Materials, 2016, 28(46): 10188-10193.
[20] FAN Y, WANG P Y, LU Y Q, et al. Lifetimeengineered NIR-II nanoparticles unlock multiplexed in vivo imaging [J]. Nature Nanotechnology, 2018, 13(10): 941-946.
[21] GU Y Y, GUO Z Y, YUAN W, et al. High-sensitivity imaging of time-domain near-infrared light transducer [J]. Nature Photonics, 2019, 13(8): 525-531.
[22] QI J, SUN C W, ZEBIBULA A, et al. Real-time and high-resolution bioimaging with bright aggregationinduced emission dots in short-wave infrared region [J]. Advanced Materials, 2018, 30(12): 1706856.
[23] ZHENG X L, ZHU X J, LU Y Q, et al. High-contrast visualization of upconversion luminescence in mice using time-gating approach [J]. Analytical Chemistry, 2016, 88(7): 3449-3454.
[24] ORTGIES D H, TAN M, XIMENDES E C, et al. Lifetime-encoded infrared-emitting nanoparticles for in vivo multiplexed imaging [J]. ACS Nano, 2018, 12(5): 4362-4368.
[25] TAN M L, DEL ROSAL B, ZHANG Y Q, et al. Rareearth-doped fluoride nanoparticles with engineered long luminescence lifetime for time-gated in vivo optical imaging in the second biological window [J]. Nanoscale, 2018, 10(37): 17771-17780.
[26] LIU X, CHEN Z H, ZHANG H X, et al. Independent luminescent lifetime and intensity tuning of upconversion nanoparticles by gradient doping for multiplexed encoding [J]. Angewandte Chemie International Edition, 2021, 60(13): 7041-7045.
[27] ZHONG Y T, MA Z R, WANG F F, et al. In vivo molecular imaging for immunotherapy using ultrabright near-infrared-IIb rare-earth nanoparticles [J]. Nature Biotechnology, 2019, 37(11): 1322-1331.
[28] TAN M, LI F, WANG X, et al. Temporal multilevel luminescence anticounterfeiting through scattering media [J]. ACS Nano, 2020, 14(6): 6532-6538.
[29] TAN M L, LI F, CAO N, et al. Accurate in vivo nanothermometry through NIR-II lanthanide luminescence lifetime [J]. Small, 2020, 16(48): 2004118.
[30] ZHAO M Y, LI B H, WU Y F, et al. A tumormicroenvironment-responsive lanthanide-cyanine FRET sensor for NIR-II luminescence-lifetime in situ imaging of hepatocellular carcinoma [J]. Advanced Materials, 2020, 32(28): 2001172.
[31] ZINIUK R, YAKOVLIEV A, LI H, et al. Real-time imaging of short-wave infrared luminescence lifetimes for anti-counterfeiting applications [J]. Frontiers in Chemistry, 2021, 9: 659553.
[32] ZHU X Y, LIU X, ZHANG H X, et al. High-fidelity NIR-II multiplexed lifetime bioimaging with bright double interfaced lanthanide nanoparticles [J]. Angewandte Chemie International Edition, 2021, 60(44): 23545-23551.
[33] NI H W, WANG Y L, TANG T, et al. Quantum dots assisted in vivo two-photon microscopy with NIR-II emission [J]. Photonics Research, 2022, 10(1): 189- 196.
[34] SAKIYAMA M, SUGIMOTO H, FUJII M. Longlived luminescence of colloidal silicon quantum dots for time-gated fluorescence imaging in the second near infrared window in biological tissue [J]. Nanoscale, 2018, 10(29): 13902-13907.
[35] NING Y Y, CHENG S M, WANG J X, et al. Fluorescence lifetime imaging of upper gastrointestinal pH in vivo with a lanthanide based near-infrared τ probe [J]. Chemical Science, 2019, 10(15): 4227-4235.
[36] CHEN G, OHULCHANSKYY T Y, LIU S, et al. Core/shell NaGdF4: Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications [J]. ACS Nano, 2012, 6(4): 2969-2977.
[37] B¨UNZLI J C G. Time to multiplex [J]. Nature Nanotechnology, 2018, 13(10): 879-880.
[38] ZHANG H X, FAN Y, PEI P, et al. Tm3+-sensitized NIR-II fluorescent nanocrystals for in vivo information storage and decoding [J]. Angewandte Chemie International Edition, 2019, 58(30): 10153-10157.
|