J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (5): 935-951.doi: 10.1007/s12204-024-2694-3

• • 上一篇    下一篇

MAGPNet: 基于多域注意力引导的红外弱小目标检测网络

  

  1. 1. 上海交通大学自动化系;系统控制与信息处理教育部重点实验室,上海 200240;2. 空基信息感知与融合全国重点实验室,河南洛阳 471009;3. 上海航天控制技术研究所;中国航天科技集团有限公司红外探测技术研发中心,上海 201109
  • 收稿日期:2023-03-21 接受日期:2023-07-14 出版日期:2025-09-26 发布日期:2024-01-05

MAGPNet: Multi-Domain Attention-Guided Pyramid Network for Infrared Small Object Detection

丁乐琪1,2, 王碧云3, 姚莉秀1,2, 蔡云泽1,2   

  1. 1. Department of Automation, Shanghai Jiao Tong University; Key Laboratory of System Control and Information Processing of Ministry of Education, Shanghai 200240, China; 2. National Key Laboratory of Air-based Information Perception and Fusion, Luoyang 471009, Henan, China; 3. Shanghai Institute of Aerospace Control Technology; Infrared Detection Technology R&D Center of China Aerospace Science and Technology Corporation, Shanghai 201109, China
  • Received:2023-03-21 Accepted:2023-07-14 Online:2025-09-26 Published:2024-01-05

摘要: 为了克服对红外暗弱小目标特征提取不足和先验信息缺乏的障碍,提出了一个多域注意力引导金字塔网络(MAGPNet)。具体来说,设计了三个模块,以确保小目标的显著特征能够在多尺度特征图中被获取和保留。为了提高网络对不同尺寸目标的适应性,设计了具有感受野注意力分支的核聚合注意(KAA)块,并使用注意机制在不同感知范围下加权特征图。基于对人类视觉系统的研究,进一步提出了自适应局部对比度测量(ALCM)模块,以增强红外小目标的局部特征。借助这个参数化组件,可以实现多尺度对比度显著性图的信息聚合。最后,为了充分利用不同尺度特征图中的空间和通道域内的信息,提出了混合空间-通道(MSC)注意力引导融合模块,以实现高质量的融合效果,同时确保小目标特征能够在深层保留。公开数据集上的实验证明,提出的MAGPNet在交并比(IoU)、精度、召回率和F-measure等性能指标上优于其他最先进方法。此外,还进行了具体的消融研究,以验证网络中每个组件的有效性。

Abstract: To overcome the obstacles of poor feature extraction and little prior information on the appearance of infrared dim small targets, we propose a multi-domain attention-guided pyramid network (MAGPNet). Specifically, we design three modules to ensure that salient features of small targets can be acquired and retained in the multi-scale feature maps. To improve the adaptability of the network for targets of different sizes, we design a kernel aggregation attention block with a receptive field attention branch and weight the feature maps under different perceptual fields with attention mechanism. Based on the research on human vision system, we further propose an adaptive local contrast measure module to enhance the local features of infrared small targets. With this parameterized component, we can implement the information aggregation of multi-scale contrast saliency maps. Finally, to fully utilize the information within spatial and channel domains in feature maps of different scales, we propose the mixed spatial-channel attention-guided fusion module to achieve high-quality fusion effects while ensuring that the small target features can be preserved at deep layers. Experiments on public datasets demonstrate that our MAGPNet can achieve a better performance over other state-of-the-art methods in terms of the intersection of union, Precision, Recall, and F-measure. In addition, we conduct detailed ablation studies to verify the effectiveness of each component in our network.

中图分类号: