J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (5): 935-951.doi: 10.1007/s12204-024-2694-3
收稿日期:
2023-03-21
接受日期:
2023-07-14
出版日期:
2025-09-26
发布日期:
2024-01-05
丁乐琪1,2, 王碧云3, 姚莉秀1,2, 蔡云泽1,2
Received:
2023-03-21
Accepted:
2023-07-14
Online:
2025-09-26
Published:
2024-01-05
摘要: 为了克服对红外暗弱小目标特征提取不足和先验信息缺乏的障碍,提出了一个多域注意力引导金字塔网络(MAGPNet)。具体来说,设计了三个模块,以确保小目标的显著特征能够在多尺度特征图中被获取和保留。为了提高网络对不同尺寸目标的适应性,设计了具有感受野注意力分支的核聚合注意(KAA)块,并使用注意机制在不同感知范围下加权特征图。基于对人类视觉系统的研究,进一步提出了自适应局部对比度测量(ALCM)模块,以增强红外小目标的局部特征。借助这个参数化组件,可以实现多尺度对比度显著性图的信息聚合。最后,为了充分利用不同尺度特征图中的空间和通道域内的信息,提出了混合空间-通道(MSC)注意力引导融合模块,以实现高质量的融合效果,同时确保小目标特征能够在深层保留。公开数据集上的实验证明,提出的MAGPNet在交并比(IoU)、精度、召回率和F-measure等性能指标上优于其他最先进方法。此外,还进行了具体的消融研究,以验证网络中每个组件的有效性。
中图分类号:
. MAGPNet: 基于多域注意力引导的红外弱小目标检测网络[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 935-951.
DING Leqi, WANG Biyun, YAO Lixiu, CAI Yunze. MAGPNet: Multi-Domain Attention-Guided Pyramid Network for Infrared Small Object Detection[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 935-951.
[1] TEUTSCH M, KRÜGER W. Classification of small boats in infrared images for maritime surveillance [C]//2010 International WaterSide Security Conference. Carrara: IEEE, 2010: 1-7. [2] LIU F C, GAO C Q, CHEN F, et al. Infrared small and dim target detection with transformer under complex backgrounds [J]. IEEE Transactions on Image Processing, 2023, 32: 5921-5932. [3] HOU Q Y, WANG Z P, TAN F J, et al. RISTDnet: Robust infrared small target detection network [J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. [4] HUANG S Q, PENG Z M, WANG Z R, et al. Infrared small target detection by density peaks searching and maximum-gray region growing [J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(12): 1919-1923. [5] HAN J H, LIANG K, ZHOU B, et al. Infrared small target detection utilizing the multiscale relative local contrast measure [J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 612-616. [6] LING F, ZHANG Y, ZHANG J H, et al. Infrared multi-target tracking based on Deep-Sort optimization algorithm [C]//2021 International Conference on Control, Automation and Information Sciences. Xi'an: IEEE, 2021: 1023-1028. [7] DAI Y M, WU Y Q, ZHOU F, et al. Asymmetric contextual modulation for infrared small target detection [C]//2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021: 949-958. [8] WANG H, ZHOU L P, WANG L. Miss detection vs. false alarm: Adversarial learning for small object segmentation in infrared images [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 8508-8517. [9] ZHANG M J, ZHANG R, YANG Y X, et al. ISNet: shape matters for infrared small target detection [C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 867-876. [10] BRAUWERS G, FRASINCAR F. A general survey on attention mechanisms in deep learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(4): 3279-3298. [11] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// 31st Conference on Neural Information Processing Systems. Long Beach: NIPS, 2017: 1-11. [12] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks [DB/OL]. (2015-06-05). https://arxiv.org/abs/1506.02025 [13] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. [14] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84-90. [15] LI X, WANG W H, HU X L, et al. Selective kernel networks [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 510-519. [16] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]//European conference on computer vision. Cham: Springer, 2018: 3-19. [17] WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7794-7803. [18] FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3141-3149. [19] ZENG M, LI J X, PENG Z. The design of Top-Hat morphological filter and application to infrared target detection [J]. Infrared Physics & Technology, 2006, 48(1): 67-76. [20] DESHPANDE S D, ER M H, VENKATESWARLU R, et al. Max-mean and max-median filters for detection of small targets [C]// SPIE's International Symposium on Optical Science, Engineering, and Instrumentation. Denver: SPIE, 1999: 74-83. [21] PHILIP CHEN C L, LI H, WEI Y T, et al. A local contrast method for small infrared target detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 574-581. [22] WEI Y T, YOU X G, LI H. Multiscale patch-based contrast measure for small infrared target detection [J]. Pattern Recognition, 2016, 58: 216-226. [23] HAN J H, LIANG K, ZHOU B, et al. Infrared small target detection utilizing the multiscale relative local contrast measure [J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 612-616. [24] DENG H, SUN X P, LIU M L, et al. Small infrared target detection based on weighted local difference measure [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 4204-4214. [25] AGHAZIYARATI S, MORADI S, TALEBI H. Small infrared target detection using absolute average difference weighted by cumulative directional derivatives [J]. Infrared Physics & Technology, 2019, 101: 78-87. [26] DAI Y M, WU Y Q, ZHOU F, et al. Attentional local contrast networks for infrared small target detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9813-9824. [27] LI B Y, XIAO C, WANG L G, et al. Dense nested attention network for infrared small target detection [J]. IEEE Transactions on Image Processing, 2022, 32: 1745-1758. [28] WU X, HONG D F, CHANUSSOT J. UIU-net: U-net in U-net for infrared small object detection [J]. IEEE Transactions on Image Processing, 2022, 32: 364-376. [29] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[M]//Mmedical image computing and computer-assisted intervention – MICCAI 2015. Cham: Springer, 2015: 234-241. [30] CHEN F, GAO C Q, LIU F C, et al. Local patch network with global attention for infrared small target detection [J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(5): 3979-3991. [31] ZHANG T F, LI L, CAO S Y, et al. Attention-guided pyramid context networks for detecting infrared small target under complex background [J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4250-4261. [32] XIE S N, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 5987-5995. [33] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions [DB/OL]. (2015-11-23). https://arxiv.org/abs/1511.07122 [34] RAHMAN M A, WANG Y. Optimizing intersection-over-union in deep neural networks for image segmentation[M]// Advances in visual computing. Cham: Springer, 2016: 234-244. [35] PASZKE A, GROSS S, MASSA F, et al. PyTorch: An imperative style, high-performance deep learning library [DB/OL]. (2019-12-03). https://arxiv.org/abs/1912.01703 [36] KINGMA D P, BA J. Adam: A method for stochastic optimization [DB/OL]. (2014-12-22). https://arxiv.org/abs/1412.6980 [37] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[DB/OL]. (2020-10-22). https://arxiv.org/abs/2010.11929 [38] HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification [C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1026-1034. [39] ZHANG Y J, WANG B Y, CAI Y Z. Multi-channel based on attention network for infrared small target detection [J]. Journal of Shanghai Jiao Tong University (Science), 2023. https://doi.org/10.1007/s12204-023-2616-9 [40] ZHAO T, WANG T S, CAO Y X, et al. Infrared dim and small target detection and tracking based on single multi-frame algorithm under sea clutter background [C]//2019 Chinese Control Conference. Guangzhou: IEEE, 2019: 7912-7917. [41] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization [C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 618-626. |
[1] | . 基于多尺度融合和自适应标签相关性的多标签图像分类模型[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 889-898. |
[2] | . 基于多注意力机制的轻量化人体姿态估计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 899-910. |
[3] | . 面向太阳能电池复杂缺陷检测的新型多步深度学习方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1050-1064. |
[4] | . 非视域成像技术研究进展[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 833-854. |
[5] | . 血管介入手术路径规划及三维视觉导航[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 472-481. |
[6] | . 基于改进FCOS算法的钢丝绳芯输送带损伤X射线图像检测[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 309-318. |
[7] | . 基于双流自编码器的无监督动作识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 330-336. |
[8] | . 基于空间特征学习与多粒度特征融合的行人重识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 363-374. |
[9] | 周苏, 钟泽滨. 基于车载智能手机的实时车辆及行人测距[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1081-1090. |
[10] | 鄢丛强1,2, 郭正玉3,4, 蔡云泽 1,2. 基于改进CycleGAN的SAR图像舰船尾迹数据增强[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 702-711. |
[11] | LONARE Savita1,2, BHRAMARAMBA Ravi2. 基于图卷积网络的联邦式隐私保护交通预测方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 509-517. |
[12] | 吕峰,王新彦,李磊,江泉,易政洋. 基于嵌入式YOLO轻量级网络的树木检测算法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 518-527. |
[13] | 宋立博a,费燕琼b. 新型Lite YOLOv4-Tiny算法及其在裂纹智能检测中的应用[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 528-536. |
[14] | 沈傲1, 2,胡冀苏2, 3,金鹏飞4,周志勇2,钱旭升2, 3,郑毅2,包婕4,王希明4,戴亚康1, 2. 基于课程学习训练的聚合注意力网络Multi-SEANet用于MRI图像的格里森级别组无创预测[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 109-119. |
[15] | 薛永波a,刘 钊b,李泽阳a,朱 平a. 基于改进分水岭算法和U-net神经网络模型的复合材料CT图像分割方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 783-792. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||