J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (3): 528-536.doi: 10.1007/s12204-022-2504-8

• • 上一篇    下一篇

新型Lite YOLOv4-Tiny算法及其在裂纹智能检测中的应用

宋立博a,费燕琼b   

  1. (上海交通大学 a. 学生创新中心;b. 机械与动力工程学院,上海200240)
  • 收稿日期:2021-07-06 接受日期:2021-07-20 出版日期:2024-05-28 发布日期:2024-05-28

New Lite YOLOv4-Tiny Algorithm and Application on Crack Intelligent Detection

SONG Liboa (宋立博), FEI Yanqiongb (费燕琼)   

  1. (a. Student Innovation Center; b. School of Mechanical Engineering,Shanghai Jiao Tong University, Shanghai 200240, China)
  • Received:2021-07-06 Accepted:2021-07-20 Online:2024-05-28 Published:2024-05-28

摘要: 为了顺应高层建筑裂缝检测市场需求的快速增长,本文提出了将深度网络技术集成到爬墙机器人中进行裂缝检测的想法。考虑到在树莓派Raspberry Pi等边缘设备上部署时的依赖性和硬件要求,选择了Darknet神经网络作为检测的基本框架。为了提高在边缘设备上的推理效率并避免深度网络可能出现的过早过拟合,对原始的YOLOv4-Tiny算法进行了改进,得到了Lite YOLOv4-Tiny算法,并使用Netron对其结构进行了相应的可视化。处理了从互联网上下载以及从校园建筑物拍摄的图像,形成了裂缝检测数据集,并使用AlexeyAB版本的Darknet在个人计算机上进行训练,生成权重文件。同时,将NNpack包加速的AlexeyAB版本Darknet部署在Raspberry Pi 4B上,并进行了裂缝检测实验。通过与原始YOLOv4-Tiny算法的比较,证实了Lite YOLOv4-Tiny算法具有速度快、误检率低等特点。创新点主要集中在网络结构简单、网络层数少以及特征前向传输早,从而防止过拟合。实验结果表明,新的Lite神经网络在性能上显著优于原始YOLOv4-Tiny网络。这一研究成果对于提高高层建筑裂缝检测的效率和准确性具有重要意义,有望推动智能爬墙机器人在建筑维护领域的广泛应用。

关键词: 智能检测,深度网络,边缘设备,树莓派

Abstract: Conforming to the rapidly increasing market demand of crack detection for tall buildings, the idea of integrating deep network technology into wall climbing robot for crack detection is put forward in this paper. Taking the dependence and hardware requirements when deployed on such edge devices as Raspberry Pi into consideration, the Darknet neural network is selected as the basic framework for detection. In order to improve the inference efficiency on edge devices and avoid the possible premature over-fitting of deep networks, the lite YOLOv4-tiny algorithm is then improved from the original YOLOv4-tiny algorithm and its structure is illustrated using Netron accordingly. The images downloaded from Internet and taken from the buildings in campus are processed to form crack detection data sets, which are trained on personal computer with the AlexeyAB version of Darknet to generate weight files. Meanwhile, the AlexeyAB version of Darknet accelerated by NNpack package is deployed on Raspberry Pi 4B, and the crack detection experiments are carried out. Some characteristics, e.g., fast speed and lower false detection rate of the lite YOLOv4-tiny algorithm, are confirmed by comparison with those of original YOLOv4-tiny algorithm. The innovations of this paper focus on the simple network structure, fewer network layers, and earlier forward transmission of features to prevent over-fitting, showing the new lite neural network exceeds the original YOLOv4-tiny network significantly.

Key words: intelligent detection, deep network, edge device, Raspberry Pi

中图分类号: