Journal of Shanghai Jiao Tong University ›› 2022, Vol. 56 ›› Issue (1): 89-100.doi: 10.16183/j.cnki.jsjtu.2020.186
Previous Articles Next Articles
ZHENG Dezhong1,2, YANG Yuanyuan1, HUANG Haozhe3, XIE Zhe1,2, LI Wentao3()
Received:
2020-06-18
Online:
2022-01-28
Published:
2022-01-21
Contact:
LI Wentao
E-mail:liwentao98@126.com
CLC Number:
ZHENG Dezhong, YANG Yuanyuan, HUANG Haozhe, XIE Zhe, LI Wentao. Multimodal Fusion Classification Network Based on Distance Confidence Score[J]. Journal of Shanghai Jiao Tong University, 2022, 56(1): 89-100.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2020.186
[1] | MANDELBAUM A, WEINSHALL D. Distance-based confidence score for neural network classifiers[EB/OL]. (2017-09-02) [2020-04-16]. https://www.researchgate.net/publication/320097900_Distance-based_Confidence_Score_for_Neural_Network_Classifiers. |
[2] | SHAKED A, WOLF L. Improved stereo matching with constant highway networks and reflective confidence learning[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, 2017: 6901-6910. |
[3] |
ZHANG Y B, ZHANG Z F, MIAO D Q, et al. Three-way enhanced convolutional neural networks for sentence-level sentiment classification[J]. Information Sciences, 2019, 477:55-64.
doi: 10.1016/j.ins.2018.10.030 URL |
[4] |
DEL-AGUA M Á, GIMÉNEZ A, SANCHIS A, et al. Speaker-adapted confidence measures for ASR using deep bidirectional recurrent neural networks[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2018, 26(7):1198-1206.
doi: 10.1109/TASLP.2018.2819900 URL |
[5] | NADEEM U, BENNAMOUN M, SOHEL F, et al. Learning-based confidence estimation for multi-modal classifier fusion[C]// International Conference on Neural Information Processing. Sydney, NSW, Australia: ICONIP, 2019: 299-312. |
[6] | BERTHON A, HAN B, NIU G, et al. Confidence scores make instance-dependent label-noise learning possible[EB/OL]. (2020-01-12)[2020-04-16]. https://www.researchgate.net/publication/338570353_Confidence_Scores_Make_Instance-dependent_Label-noise_Learning_Possible. |
[7] | SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[EB/OL].(2013-12-12)[2020-04-16]. https://www.researchgate.net/publication/259440613_Intriguing_properties_of_neural_networks. |
[8] | GAL Y, GHAHRAMANI Z. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning[J]. Proceedings of Machine Learning Research, 2016, 48:1050-1059. |
[9] | GUO C, PLEISS G, SUN Y, et al. On calibration of modern neural networks[J]. Proceedings of Machine Learning Research, 2017, 70:1321-1330. |
[10] |
DENG B, JIA S, SHI D M. Deep metric learning-based feature embedding for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2):1422-1435.
doi: 10.1109/TGRS.36 URL |
[11] | CAO S C, WANG X F, KITANI K M. Learnable embedding space for efficient neural architecture compression[EB/OL].(2019-02-12) [2020-04-16]. https://www.researchgate.net/publication/330845079_Learnable_Embedding_Space_for_Efficient_Neural_Architecture_Compression. |
[12] | HU H X, ZHOU G T, DENG Z W, et al. Learning structured inference neural networks with label relations[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016: 2960-2968. |
[13] | OZDEMIR O, WOODWARD B, BERLIN A A. Propagating uncertainty in multi-stage Bayesian convolutional neural networks with application to pulmonary nodule detection[EB/OL].(2019-02-12)[2020-04-16]. https://www.researchgate.net/publication/321511200_Propagating_Uncertainty_in_Multi-Stage_Bayesian_Convolutional_Neural_Networks_with_Application_to_Pulmonary_Nodule_Detection. |
[14] | NEAL R M. Bayesian learning for neural networks[M]. New York, NY, USA: Springer, 1996. |
[15] | 徐磊, 李向阳, 黄湘岳. 基于贝叶斯网络的非常规突发事件灾情评估[J]. 上海交通大学学报, 2013, 47(5):846-850. |
XU Lei, LI Xiangyang, HUANG Xiangyue. Unconventional emergency assessment based on Bayesian network[J]. Journal of Shanghai Jiao Tong University, 2013, 47(5):846-850. | |
[16] | GAL Y, GHAHRAMANI Z. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning[C]// Proceedings of the 33rd International Conference on International Conference on Machine Learning. New York, NY, USA:SIGCHI, 2016,: 1050-1059. |
[17] | LAKSHMINARAYANAN B, PRITZEL A, BLUNDELL C. Simple andscalable predictive uncertainty estimation using deep ensembles[EB/OL].(2016-12-12)[2020-04-16]. https://www.researchgate.net/publication/311430201_Simple_and_Scalable_Predictive_Uncertainty_Estimation_using_Deep_Ensembles. |
[18] | DENG J, DONG W, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE, 2009: 10836047. |
[19] | NOJAVANASGHARI B, GOPINATH D, KOUSHIK J, et al. Deep multimodal fusion for persuasiveness prediction[C]// Proceedings of the 18th ACM International Conference on Multimodal Interaction. Tokyo, Japan: SIGCHI, 2016: 284-288. |
[20] |
BALTRUŠAITIS T, AHUJA C, MORENCY L P. Multimodal machine learning: A survey and taxonomy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(2):423-443.
doi: 10.1109/TPAMI.2018.2798607 URL |
[21] | ZARAGOZA H, BUC D. Confidence measures for neural network classifiers[EB/OL]. [2020-04-16]. https://www.semanticscholar.org/paper/Confidence-Measures-for-Neural-Network-Classifiers-Zaragoza-Buc/f19e6e8a06cba5fc8cf234881419de9193bba9d0. |
[22] | GHOSH P, DAVIS L S. Understanding center loss based network for image retrieval with few training data[C]// Computer Vision-European Conference on Computer Vision 2018 Workshops. Munich, Germany: Springer, 2018: 717-722. |
[23] | WEN Y D, ZHANG K P, LI Z F, et al. A discriminative feature learning approach for deep face recognition[C]// Computer Vision-European Conference on Computer Vision 2016 Workshops. Amsterdam, The Netherlands: Springer, 2016: 499-515. |
[24] | SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]// Proceedings of the 31 st International Conference on Neural Information Processing Systems. Red Hook, NY, USA: SIGCHI, 2017: 4080-4090. |
[25] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL].(2017-06-12)[2020-04-16]. https://arxiv.org/abs/1706.03762. |
[26] | WANG F, JIANG M Q, QIAN C, et al. Residual attention network for image classification[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017: 6450-6458. |
[27] | ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial networks[J]. Proceedings of Machine Learning Research, 2019, 97:7354-7363. |
[28] | RAMACHANDRAN P, PARMAR N, VASWANI A, et al. Stand-alone self-attention in vision models[EB/OL].(2019-06-28)[2020-04-16]. https://www.researchgate.net/publication/333815334_Stand-Alone_Self-Attention_in_Vision_Models. |
[29] | WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]// Computer Vision-European Conference on Computer Vision 2018 Workshops. Munich, Germany: Springer, 2018: 3-19. |
[30] |
WILKS D S. Sampling distributions of the Brier score and Brier skill score under serial dependence[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 136(653):2109-2118.
doi: 10.1002/qj.709 URL |
[1] | ZENG Guozhi, WEI Ziqing, YUE Bao, DING Yunxiao, ZHENG Chunyuan, ZHAI Xiaoqiang. Energy Consumption Prediction of Office Buildings Based on CNN-RNN Combined Model [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1256-1261. |
[2] | WU Shuchen, QI Zongfeng, LI Jianxun. Intelligent Global Sensitivity Analysis Based on Deep Learning [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 840-849. |
[3] | QUAN Daying, CHEN Yun, TANG Zeyu, LI Shitong, WANG Xiaofeng, JIN Xiaoping. Radar Signal Recognition Based on Dual Channel Convolutional Neural Network [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 877-885. |
[4] | QIN Pengfei (秦鹏飞), WANG Xiaoliang∗ (王晓亮). Construction on Aerodynamic Surrogate Model of Stratospheric Airship [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(6): 768-779. |
[5] | SU Hong1 (苏 红), WU Bozhao2 (吴博钊), MAO Xuchu1∗ (茅旭初). Non-Line-of-Sight Multipath Detection Method for BDS/GPS Fusion System Based on Deep Learning [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(6): 844-854. |
[6] | LÜ Qibing (吕其兵), LIU Tianyuan (刘天元), ZHANG Rong (张荣), JIANG Yanan (江亚南), XIAO Lei (肖雷), BAO Jingsong∗ (鲍劲松). Generation Approach of Human-Robot Cooperative Assembly Strategy Based on Transfer Learning [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 602-613. |
[7] | QIN Yichao, HUANG Limin, WANG Xiao, MA Xuewen, DUAN Wenyang, HAO Wei. Feasibility of Wave Measurement by Using a Sailing Buoy and the Artificial Neural Network Technique [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 498-505. |
[8] | ZHAO Yong, SU Dan. Rogue Wave Prediction Based on Four Combined Long Short-Term Memory Neural Network Models [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 516-522. |
[9] | LIU Min (刘 敏), YI Ming (易 鸣), WU Minghu∗ (武明虎), WANG Juan (王 娟), HE Yu (何 宇). Breast Pathological Image Classification Based on VGG16 Feature Concatenation [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 473-484. |
[10] | JIANG Zhiguo (蒋志国), CHANG Qing∗ (常 青). USSL Net: Focusing on Structural Similarity with Light U-Structure for Stroke Lesion Segmentation [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 485-497. |
[11] | LU Guannan1 (卢冠男), WANG Mengling1∗ (王梦灵), FOX Tamara2, JIANG Peng3 (蒋 鹏), JIANG Fusong3 (蒋伏松). Novel Indicators for Adverse Glycemic Events Detection Analysis Based on Continuous Glucose Monitoring Neural Network Predictive Models [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 498-504. |
[12] | DING Ming, MENG Shuai, WANG Shuheng, XIA Xi. Neural-Network-Based Adaptive Feedback Linearization Control for 6-DOF Wave Compensation Platform [J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 165-172. |
[13] | LIU Xiuli, XU Xiaoli. A Fault Diagnosis Method Based on Feature Pyramid CRNN Network [J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 182-190. |
[14] | YUAN Xiaoqi (袁筱祺), ZHU Lelan (朱乐兰), XU Qiongfan(徐琼凡), GAO Wei (高玮). Risk Prediction Model of Gallbladder Disease in Shanghai Middle-Aged and Elderly People Based on Neural Networks [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 153-159. |
[15] | DOU Yibin, CHEN Ang, LU Yunchao, LIU Luguang, LI Zongyang. Identification of Temperature-Dependent Thermophysical Parameters Based on Levenberg-Marquardt Algorithm [J]. Air & Space Defense, 2022, 5(2): 17-26. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||