[1] |
范厚明, 徐振林, 李阳, 等. 混合遗传算法求解多中心联合配送路径问题[J]. 上海交通大学学报, 2019, 53(8):1000-1009.
|
|
FAN Houming, XU Zhenlin, LI Yang, et al. Hybrid genetic algorithm for solving multi-depot joint distribution routing problem[J]. Journal of Shanghai Jiao Tong University, 2019, 53(8):1000-1009.
|
[2] |
熊浩, 鄢慧丽, 周和平, 等. 多阶段动态车辆路径问题实时优化策略[J]. 上海交通大学学报, 2013, 47(3):450-453.
|
|
XIONG Hao, YAN Huili, ZHOU Heping, et al. Real-time optimization strategy of the multi-period dynamic vehicle routing problems[J]. Journal of Shanghai Jiao Tong University, 2013, 47(3):450-453.
|
[3] |
BERTSIMAS D, GUPTA V, PASCHALIDIS I C. Data-driven estimation in equilibrium using inverse optimization[J]. Mathematical Programming, 2015, 153(2):595-633.
doi: 10.1007/s10107-014-0819-4
URL
|
[4] |
KOVACS A A, GOLDEN B L, HARTL R F, et al. Vehicle routing problems in which consistency considerations are important: A survey[J]. Networks, 2014, 64(3):192-213.
doi: 10.1002/net.v64.3
URL
|
[5] |
SMILOWITZ K, NOWAK M, JIANG T T. Workforce management in periodic delivery operations[J]. Transportation Science, 2013, 47(2):214-230.
doi: 10.1287/trsc.1120.0407
URL
|
[6] |
HAUGHTON M A. The efficacy of exclusive territory assignments to delivery vehicle drivers[J]. European Journal of Operational Research, 2008, 184(1):24-38.
doi: 10.1016/j.ejor.2006.10.014
URL
|
[7] |
ZHONG H S, HALL R W, DESSOUKY M. Territory planning and vehicle dispatching with driver learning[J]. Transportation Science, 2007, 41(1):74-89.
doi: 10.1287/trsc.1060.0167
URL
|
[8] |
LIU L, ANDRIS C, RATTI C. Uncovering cabdrivers’ behavior patterns from their digital traces[J]. Computers, Environment and Urban Systems, 2010, 34(6):541-548.
doi: 10.1016/j.compenvurbsys.2010.07.004
URL
|
[9] |
韦增欣, 陈进来, 罗朝晖. 基于驾驶员偏好的最优路径选择[J]. 交通运输系统工程与信息, 2010, 10(6):141-144.
|
|
WEI Zengxin, CHEN Jinlai, LUO Chaohui. Optimal path selection based on driver’s preference[J]. Journal of Transportation Systems Engineering and Information Technology, 2010, 10(6):141-144.
|
[10] |
PAHLAVANI P, DELAVAR M R. Multi-criteria route planning based on a driver’s preferences in multi-criteria route selection[J]. Transportation Research Part C: Emerging Technologies, 2014, 40:14-35.
doi: 10.1016/j.trc.2014.01.001
URL
|
[11] |
HE Z C, CHEN K Y, CHEN X Y. A collaborative method for route discovery using taxi drivers’ experience and preferences[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(8):2505-2514.
doi: 10.1109/TITS.2017.2753468
URL
|
[12] |
黄敏, 毛锋, 钱宇翔. 基于出租车司机经验的约束深度强化学习算法路径挖掘[J]. 计算机应用研究, 2020, 37(5):1298-1302.
|
|
HUANG Min, MAO Feng, QIAN Yuxiang. Mining fastest route using taxi drivers’ experience via constrained deep reinforcement learning[J]. Application Research of Computers, 2020, 37(5):1298-1302.
|
[13] |
AHUJA R K, ORLIN J B. Combinatorial algorithms for inverse network flow problems[J]. Networks, 2002, 40(4):181-187.
doi: 10.1002/(ISSN)1097-0037
URL
|
[14] |
AHUJA R K, ORLIN J B. Inverse optimization[J]. Operations Research, 2001, 49(5):771-783.
doi: 10.1287/opre.49.5.771.10607
URL
|
[15] |
ZHANG J Z, LIU Z H. Calculating some inverse linear programming problems[J]. Journal of Computational and Applied Mathematics, 1996, 72(2):261-273.
doi: 10.1016/0377-0427(95)00277-4
URL
|
[16] |
ZHANG J Z, LIU Z H. A general model of some inverse combinatorial optimization problems and its solution method under l∞ norm[J]. Journal of Combinatorial Optimization, 2002, 6(2):207-227.
doi: 10.1023/A:1013807829021
URL
|
[17] |
HEUBERGER C. Inverse combinatorial optimization: A survey on problems, methods, and results[J]. Journal of Combinatorial Optimization, 2004, 8(3):329-361.
doi: 10.1023/B:JOCO.0000038914.26975.9b
URL
|
[18] |
YOU S I, CHOW J Y J, RITCHIE S G. Inverse vehicle routing for activity-based urban freight forecast modeling and city logistics[J]. Transportmetrica A: Transport Science, 2016, 12(7):650-673.
doi: 10.1080/23249935.2016.1189723
URL
|
[19] |
牟健慧, 郭前建, 高亮, 等. 基于混合的多目标遗传算法的多目标流水车间逆调度问题求解方法[J]. 机械工程学报, 2016, 52(22):186-197.
|
|
MOU Jianhui, GUO Qianjian, GAO Liang, et al. Multi-objective genetic algorithm for solving multi-objective flow-shop inverse scheduling problems[J]. Journal of Mechanical Engineering, 2016, 52(22):186-197.
|
[20] |
BÄRMANN A, MARTIN A, POKUTTA S, et al. An online-learning approach to inverse optimization[DB/OL]. (2020-03-29)[2020-07-08]. https://arxiv.org/abs/1810.12997v2.
|
[21] |
ASWANI A, SHEN Z J M, SIDDIQ A. Inverse optimization with noisy data[J]. Operations Research, 2018, 66(3):870-892.
doi: 10.1287/opre.2017.1705
URL
|
[22] |
CHAN T C Y, LEE T, TEREKHOV D. Inverse optimization: Closed-form solutions, geometry, and goodness of fit[J]. Management Science, 2019, 65(3):1115-1135.
doi: 10.1287/mnsc.2017.2992
URL
|
[23] |
SAEZ-GALLEGO J, MORALES J M. Short-term forecasting of price-responsive loads using inverse optimization[J]. IEEE Transactions on Smart Grid, 2018, 9(5):4805-4814.
doi: 10.1109/TSG.5165411
URL
|
[24] |
ARORA S, HAZAN E, KALE S. Fast algorithms for approximate semidefinite programming using the multiplicative weights update method[C]// 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05). Pittsburgh, USA: IEEE, 2005: 339-348.
|
[25] |
ARORA S, HAZAN E, KALE S. The multiplicative weights update method: A meta-algorithm and applications[J]. Theory of Computing, 2012, 8(1):121-164.
doi: 10.4086/toc
URL
|