Journal of Shanghai Jiao Tong University ›› 2022, Vol. 56 ›› Issue (9): 1256-1261.doi: 10.16183/j.cnki.jsjtu.2021.192
• Mechanical Engineering • Previous Articles Next Articles
ZENG Guozhi1, WEI Ziqing1, YUE Bao2, DING Yunxiao2, ZHENG Chunyuan2, ZHAI Xiaoqiang1()
Received:
2021-05-23
Online:
2022-09-28
Published:
2022-10-09
Contact:
ZHAI Xiaoqiang
E-mail:xqzhai@sjtu.edu.cn
CLC Number:
ZENG Guozhi, WEI Ziqing, YUE Bao, DING Yunxiao, ZHENG Chunyuan, ZHAI Xiaoqiang. Energy Consumption Prediction of Office Buildings Based on CNN-RNN Combined Model[J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1256-1261.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.192
Tab.2
Building energy consumption data structure for deep learning
时间 轴 | 模型输出 能耗数据/ (kW·h) | 模型输入 | ||||
---|---|---|---|---|---|---|
室外 气温/℃ | 相对 湿度/% | 工作日 | 时刻 | 历史 序列 | ||
t+1 | Wt+1 | Tt+1 | φt+1 | Dt+1 | Ht+1 | Wt-23 |
t | Tt | φt | Dt | Ht | Wt-24 | |
t-1 | Tt-1 | φt-1 | Dt-1 | Ht-1 | Wt-25 | |
t-2 | Tt-2 | φt-2 | Dt-2 | Ht-2 | Wt-26 | |
… | … | … | … | … | … | |
t-45 | Tt-45 | φt-45 | Dt-45 | Ht-45 | Wt-69 | |
t-46 | Tt-46 | φt-46 | Dt-46 | Ht-46 | Wt-70 | |
t-47 | Tt-47 | φt-47 | Dt-47 | Ht-47 | Wt-71 |
[1] | 中国建筑节能协会. 中国建筑能耗研究报告2020[J]. 建筑节能, 2021, 49(2): 1-6. |
China Association of Building Energy Efficiency. China building energy consumption annual report 2020[J]. Building Energy Efficiency, 2021, 49(2): 1-6. | |
[2] |
FOUCQUIER A, ROBERT S, SUARD F, et al. State of the art in building modelling and energy performances prediction: A review[J]. Renewable and Sustainable Energy Reviews, 2013, 23: 272-288.
doi: 10.1016/j.rser.2013.03.004 URL |
[3] | GASSAR A A A, CHA S H. Energy prediction techniques for large-scale buildings towards a sustainable built environment: A review[J]. Energy and Buildings, 2020, 224: 110238. |
[4] |
FU X, ZENG X J, FENG P P, et al. Clustering-based short-term load forecasting for residential electricity under the increasing-block pricing tariffs in China[J]. Energy, 2018, 165: 76-89.
doi: 10.1016/j.energy.2018.09.156 URL |
[5] | KIM J H, SEONG N C, CHOI W. Forecasting the energy consumption of an actual air handling unit and absorption chiller using ANN models[J]. Energies, 2020, 13(17): 4361. |
[6] |
ROBINSON C, DILKINA B, HUBBS J, et al. Machine learning approaches for estimating commercial building energy consumption[J]. Applied Energy, 2017, 208: 889-904.
doi: 10.1016/j.apenergy.2017.09.060 URL |
[7] |
RAJAGUKGUK R A, RAMADHAN R A A, LEE H J. A review on deep learning models for forecasting time series data of solar irradiance and photovoltaic power[J]. Energies, 2020, 13(24): 6623.
doi: 10.3390/en13246623 URL |
[8] |
FAN C, SUN Y J, ZHAO Y, et al. Deep learning-based feature engineering methods for improved building energy prediction[J]. Applied Energy, 2019, 240: 35-45.
doi: 10.1016/j.apenergy.2019.02.052 URL |
[9] | 廖文强, 王江宇, 陈焕新, 等. 基于深度学习的建筑能耗短期预测方法研究[C]// 2019年中国家用电器技术大会论文集. 佛山: 电器杂志社, 2019: 1173-1178 |
LIAO Wenqiang, WANG Jiangyu, Chen Huanxin, et al. Research on short-term building energy consumption prediction method based on deep-learning[C]// Proceeding of 2019 China Household Electrical Appliances Technical Conference. Foshan, China: Appliance, 2019: 1173-1178. | |
[10] | 邹锋, 田大伟, 王悦, 等. 基于生成对抗网络的深度学习能耗预测算法[J]. 电脑知识与技术, 2019, 15(2): 198-200. |
ZOU Feng, TIAN Dawei, WANG Yue, et al. Deep learning energy consumption prediction algorithms based on generative adversarial networks[J]. Computer Knowledge and Technology, 2019, 15(2): 198-200. | |
[11] |
RUNGE J, ZMEUREANU R. A review of deep learning techniques for forecasting energy use in buildings[J]. Energies, 2021, 14(3): 608.
doi: 10.3390/en14030608 URL |
[12] |
YAMASHITA R, NISHIO M, DO R K G, et al. Convolutional neural networks: An overview and application in radiology[J]. Insights into Imaging, 2018, 9(4): 611-629.
doi: 10.1007/s13244-018-0639-9 pmid: 29934920 |
[13] | HAZRA A, CHOUDHARY P, SHEETAL S M. Recent advances in deep learning techniques and its applications: An overview[C]// Advances in Biomedical Engineering and Technology. Singapore: Springer, 2020: 103-122. |
[14] | Iowa State University. Iowa environmental mesonet[DB/OL]. (2019-10-22) [2021-03-16]. http://mesonet.agron.iastate.edu/request/download.phtml?network=CN__ASOS#. |
[1] | WU Shuchen, QI Zongfeng, LI Jianxun. Intelligent Global Sensitivity Analysis Based on Deep Learning [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 840-849. |
[2] | ZHAO Yong, SU Dan. Rogue Wave Prediction Based on Four Combined Long Short-Term Memory Neural Network Models [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 516-522. |
[3] | LÜ Chaofan, YAN Yingjie, LIN Li, CHAI Gang, BAO Jinsong. Design of Mandibular Angle Osteotomy Plane Based on Point Cloud Semantic Segmentation Algorithm [J]. Journal of Shanghai Jiao Tong University, 2022, 56(11): 1509-1517. |
[4] | TAO Haihong, YAN Yingfei. A Netted Radar Node Selection Algorithm Based on GA-CNN [J]. Air & Space Defense, 2022, 5(1): 1-5. |
[5] | JIN Lijie, WU Yatao. Radar Signal Modulation Type Recognition Based on Double CNN [J]. Air & Space Defense, 2022, 5(1): 66-70. |
[6] | TUNG Hao (董昊), ZHENG Chao (郑超), MAO Xinsheng(毛新生), QIAN Dahong (钱大宏). Multi-Lead ECG Classification via an Information-Based Attention Convolutional Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 55-69. |
[7] | WANG Zhiming(王志明), DONG Jingjing (董静静), ZHANG Junpeng∗ (张军鹏). Multi-Model Ensemble Deep Learning Method to Diagnose COVID-19 Using Chest Computed Tomography Images [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 70-80. |
[8] | ZHANG Yue (张月), LIU Shijie (刘世界), LI Chunlai (李春来), WANG Jianyu (王建宇). Application of Deep Learning Method on Ischemic Stroke Lesion Segmentation [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 99-111. |
[9] | WANG Xingzhi, ZHAI Haibao, YAN Yaqin, WU Qingxi. Pre-Dispatching Method of New Generation Dispatching and Control System Based on Digital Twin and Deep Learning [J]. Journal of Shanghai Jiao Tong University, 2021, 55(S2): 37-41. |
[10] | WANG Yan, CHEN Yaoran, HAN Zhaolong, ZHOU Dai, BAO Yan. Short-Term Wind Speed Forecasting Model Based on Mutual Information and Recursive Neural Network [J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1080-1086. |
[11] | ZOU Yue (邹 悦), LI Lin (李 霖), YANG Xubo (杨旭波). Lightweight Method for Vehicle Re-identification Using Reranking Algorithm Based on Topology Information of Surveillance Network [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 577-586. |
[12] | LI Lin (李 霖), HU Zeyu(胡泽宇), YANG Xubo (杨旭波). Intelligent Analysis of Abnormal Vehicle Behavior Based on a Digital Twin [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 587-597. |
[13] | WANG Yu, YU Yuefeng, ZHU Xiaolei, ZHANG Zhongxiao. Gas-Fired Flame Stability Based on Optical Flow Method and Deep Learning [J]. Journal of Shanghai Jiao Tong University, 2021, 55(4): 462-470. |
[14] | ZHAN Zhu (占竹), ZHANG Wenjun (张文俊), CHEN Xia (陈霞), WANG Jun (汪军) . Objective Evaluation of Fabric Flatness Grade Based on Convolutional Neural Network [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 503-510. |
[15] | LI Guanyu (李冠玉), ZHANG Fengqin (张凤芹), LIU Qiegen (刘且根) . Distribution-Transformed Network for Impulse Noise Removal [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 543-553. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||