Journal of Shanghai Jiao Tong University ›› 2022, Vol. 56 ›› Issue (1): 101-113.doi: 10.16183/j.cnki.jsjtu.2020.324
Previous Articles Next Articles
LI Yi1, BAI Junqiang1(), ZHANG Yanjun2, ZHAO Ke2
Received:
2020-10-11
Online:
2022-01-28
Published:
2022-01-21
Contact:
BAI Junqiang
E-mail:junqiang@nwpu.edu.cn
CLC Number:
LI Yi, BAI Junqiang, ZHANG Yanjun, ZHAO Ke. Influence of Distributed Leading-Edge Roughness on Stall Characteristics of NACA0012 Airfoil[J]. Journal of Shanghai Jiao Tong University, 2022, 56(1): 101-113.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2020.324
[1] | BERTIN J J, CUMMINGS R M. Aerodynamics for engineers[M]. 6th ed. Harlow Essex: Pearson Education Limited, 2013. |
[2] | RAMSAY R R, HOFFMAN M J, GREGOREK G M. Effects of grit roughness and pitch oscillations on the S809 airfoil[R]. Golden, Colorado: National Renewable Energy Laboratory, 1995. |
[3] | JANISZEWSKA J M, RAMSAY R R, HOFFMAN M J, et al. Effects of grit roughness and pitch oscillations on the S814 airfoil[R]. Golden, Colorado: National Renewable Energy Laboratory, 1995. |
[4] | REUSS R L, HOFFMAN M Jand GREGOREK G M. Effects of surface roughness and vortex generators on the NACA 4415 airfoil[R]. Golden, Colorado: National Renewable Energy Laboratory, 1995. |
[5] |
KERHO M F, BRAGG M B. Airfoil boundary-layer development and transition with large leading-edge roughness[J]. AIAA Journal, 1997, 35(1):75-84.
doi: 10.2514/2.65 URL |
[6] | 包能胜, 霍福鹏, 叶枝全, 等. 表面粗糙度对风力机翼型性能的影响[J]. 太阳能学报, 2005, 26(4):458-462. |
BAO Nengsheng, HUO Fupeng, YE Zhiquan, et al. Aerodynamic performance influence with roughness on wind turbine airfoil surface[J]. Acta Energiae Solaris Sinica, 2005, 26(4):458-462. | |
[7] | 包能胜, 倪维斗. 风力机翼型前缘表面粗糙度对气动性能影响[J]. 太阳能学报, 2008, 29(12):1465-1470. |
BAO Nengsheng, NI Weidou. Influence of additional rough strap of wind turbine airfoil leading edge surface on aerodynamic performance[J]. Acta Energiae Solaris Sinica, 2008, 29(12):1465-1470. | |
[8] | LI D S, LI R N, YANG C X, et al. Effects of surface roughness on aerodynamic performance of a wind turbine airfoil[C]// 2010 Asia-Pacific Power and Energy Engineering Conference. Piscataway, NJ, USA: IEEE, 2010: 1-4. |
[9] | 李仁年, 陈寅. 雷诺数对粗糙表面翼型气动性能的影响[J]. 南京航空航天大学学报, 2011, 43(5):693-696. |
LI Rennian, CHEN Yin. Effects of surface roughness and Reynolds number on aerodynamic performance of wind turbine airfoil[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(5):693-696. | |
[10] | 焦灵燕, 汪建文, 贺玲丽. 粗糙度对风力机翼型气动性能影响的模拟研究[J]. 可再生能源, 2014, 32(12):1816-1820. |
JIAO Lingyan, WANG Jianwen, HE Lingli. Simulation study on effect of surface roughness on aerodynamic performance of wind turbine airfoil[J]. Renewable Energy Resources, 2014, 32(12):1816-1820. | |
[11] | JOSEPH L A, FENOUIL J, BORGOLTZ A, et al. Aerodynamic effects of roughness on wind turbine blade sections[C]// 33rd AIAA Applied Aerodynamics Conference. Reston, Virginia, USA: AIAA, 2015. |
[12] | 李虹杨, 郑赟, 刘大响. 粗糙壁面诱导的流动转捩数值模拟方法[J]. 航空动力学报, 2016, 31(9):2251-2257. |
LI Hongyang, ZHENG Yun, LIU Daxiang. Numerical simulation method of roughness induced transition[J]. Journal of Aerospace Power, 2016, 31(9):2251-2257. | |
[13] | 李虹杨, 郑赟. 粗糙度对涡轮叶片流动转捩及传热特性的影响[J]. 北京航空航天大学学报, 2016, 42(10):2038-2047. |
LI Hongyang, ZHENG Yun. Effect of surface roughness on flow transition and heat transfer of turbine blade[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10):2038-2047. | |
[14] |
ZHANG Y. Effects of distributed leading-edge roughness on aerodynamic performance of a low-Reynolds-number airfoil: An experimental study[J]. Theoretical and Applied Mechanics Letters, 2018, 8(3):201-207.
doi: 10.1016/j.taml.2018.03.010 URL |
[15] |
KRUSE E K, SØRENSEN N, BAK C, et al. CFD simulations and evaluation of applicability of a wall roughness model applied on a NACA 633-418 airfoil[J]. Wind Energy, 2020, 23(11):2056-2067.
doi: 10.1002/we.v23.11 URL |
[16] |
WANG M Y, YANG C W, LI Z L, et al. Effects of surface roughness on the aerodynamic performance of a high subsonic compressor airfoil at low Reynolds number[J]. Chinese Journal of Aeronautics, 2021, 34(3):71-81.
doi: 10.1016/j.cja.2020.08.020 URL |
[17] |
MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
doi: 10.2514/3.12149 URL |
[18] | LANGEL C M, CHOW R, VAN DAM C P. Further developments to a local correlation based roughness model for boundary layer transition prediction[C]// 53rd AIAA Aerospace Sciences Meeting. Reston, Virginia, USA: AIAA, 2015. |
[19] | LANGTRY R B. A correlation-based transition model using local variables for unstructured parallelized CFD codes[D]. Stuttgart: University Stuttgart, 2006. |
[20] | LANGEL C M, CHOW R, VAN DAM C P, et al. RANS based methodology for predicting the influence of leading edge erosion on airfoil performance [R]. Albuquerque,New Mexico: Sandia National Laboratories, 2017. |
[21] |
WILCOX D C. Formulation of the k-w turbulence model revisited[J]. AIAA Journal, 2008, 46(11):2823-2838.
doi: 10.2514/1.36541 URL |
[22] |
LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
doi: 10.2514/1.42362 URL |
[23] |
DURBIN P A, MEDIC G, SEO J M, et al. Rough wall modification of two-layer k model[J]. Journal of Fluids Engineering, 2001, 123(1):16-21.
doi: 10.1115/1.1343086 URL |
[24] |
KNOPP T, EISFELD B, CALVO J B. A new extension for k-ω turbulence models to account for wall roughness[J]. International Journal of Heat and Fluid Flow, 2009, 30(1):54-65.
doi: 10.1016/j.ijheatfluidflow.2008.09.009 URL |
[25] |
AUPOIX B. Roughness corrections for the k-ω shear stress transport model: Status and proposals[J]. Journal of Fluids Engineering, 2015, 137(2):021202.
doi: 10.1115/1.4028122 URL |
[26] | FEINDT E G. Untersuchungen über die abhängigkeit des umschlages laminar-turbulent von der oberflächenrauhigkeit und der druckverteilung[J]. Schiffbautechn, 1957, 50(8):180-203. |
[27] | DASSLER P, KOZULOVIC D, FIALA A. Modeling of roughness-induced transition using local variables[C]// FiFth European Conference on Computational Fluid Dynamics, Lisbon, Portugal: ECCOMAS, 2010. |
[1] | GAO Changhao, SONG Wenping, HAN Shaoqiang, LU Kuan, WANG Yue, YE Kun. Research on Poststall Re-orientation Technology of Air-to-Air Missile [J]. Air & Space Defense, 2022, 5(3): 17-26. |
[2] | XU Shengguan, CHEN Hongquan, ZHANG Jiale, GAO Huanqin, JIA Xuesong. Study of the Efficient Global Optimization with High Accuracy and Its Applications in Aerodynamic [J]. Air & Space Defense, 2022, 5(3): 65-72. |
[3] | LIU Weihong, LIU Ye. Fast Construction of a Circuit Model for Via-Hole Transition Based on Liquid Crystal Polymer Multilayer Substrate [J]. Journal of Shanghai Jiao Tong University, 2022, 56(11): 1547-1553. |
[4] | JIN Long, YI Shihe, HUO Junjie, LIU Xiaolin, NIU Haibo. Experimental Study of Supersonic Boundary Layer Transition Induced by Cylindrical Roughness Elements [J]. Journal of Shanghai Jiao Tong University, 2021, 55(8): 942-948. |
[5] | HE Lihua, PAN Jianfeng, NI Jing, FENG Kai, CUI Zhi. Surface Micro-Texture and Cutting Characteristics of Milling Cutter for Die-Casting Aluminum Alloy [J]. Journal of Shanghai Jiao Tong University, 2021, 55(6): 750-756. |
[6] | GAO Yuan, WU Yadong, OUYANG Hua. Numerical Simulation of Compressor Stall Recovery Control [J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1343-1351. |
[7] | LIU Shiao, LIAO Chencong, CHEN Jinjian, YE Guanlin, XIA Xiaohe. Strength Properties of Saturated Sand-Structure Interface by Triaxial Test Method [J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1371-1379. |
[8] | CHANG Lu, SHAN Liang, LI Jun, DAI Yuewei . Sliding Mode Control of T-Shaped Pedestrian Channel [J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(4): 478-485. |
[9] | ZHANG Ke, WU Yadong. Blade Optimization Design for Expanding Stable Operating Range of High Bypass Ratio Fan [J]. Journal of Shanghai Jiaotong University, 2020, 54(10): 1024-1034. |
[10] | SHI Zhenxing, GUAN Zaisheng, WANG Lei, SHI Chengang, WU Bin. Research on Multi-objective Optimization of Autopilot Parameters Based on Genetic Algorithm [J]. Air & Space Defense, 2020, 3(1): 41-49. |
[11] | LEI Xuelin *(雷学林), SHI Yukai (史玉凯), HE Yun (何云). Comparative Study on Cutting Performance of Chaser and Triangle-Shaped Inserts in Inconel 718 Turning [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(3): 388-394. |
[12] | LIU Zhihao,MIN Rong,FANG Cheng,YI Chao,LU Cunyue,MA Yixin. Transition Flight Control Strategy of Multiple Flight Mode Vertical Take-Off and Landing Unmanned Aerial Vehicle [J]. Journal of Shanghai Jiaotong University, 2019, 53(10): 1173-1181. |
[13] | YAO Huilan, ZHANG Huaixin. Improvements of Scaling Method Recommended by ITTC at a Lower Reynolds Number Range [J]. Journal of Shanghai Jiao Tong University, 2019, 53(1): 35-41. |
[14] | GAO Rui-li, LU Jing, GAO Jin-yan, ZHOU Yu-chen, GUO Mei-shan, MA Si-yao. Method Analysis of Offshore Oil Steel Structure Jacket Construction [J]. Ocean Engineering Equipment and Technology, 2018, 5(增刊): 264-270. |
[15] | GAO Yun1, 2,ZHENG Wenlong1,XIONG Youming1,ZOU Li3. Numerical Study of the Vortex Induced Vibrations of a Circular Cylinder with Different Degrees of Surface Roughness [J]. Journal of Shanghai Jiaotong University, 2018, 52(4): 419-428. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||