Journal of Shanghai Jiao Tong University ›› 2022, Vol. 56 ›› Issue (2): 182-190.doi: 10.16183/j.cnki.jsjtu.2021.001
Previous Articles Next Articles
Received:
2021-01-04
Online:
2022-02-28
Published:
2022-03-03
CLC Number:
LIU Xiuli, XU Xiaoli. A Fault Diagnosis Method Based on Feature Pyramid CRNN Network[J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 182-190.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.001
Tab.3
Parameters of network
编号 | 网络层 | 结构参数 | 算法参数 | 输出 | 补零 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
核数量/个 | 步长 | 循环/次 | 实际 | 语义 | |||||||
1 | 复合层1 | 卷积层 | 2×2×1@32 | — | 2×2 | — | 24× | 128 | 22×126 | 是 | |
LSTM | — | 3072 | — | 32 | 24× | 128 | 24×128 | 否 | |||
池化层 | 2×2 | — | 1×1 | — | 24× | 128 | 22×126 | 是 | |||
2 | 池化层 | 2×2 | — | 2×2 | — | 12× | 64 | 11×63 | 否 | ||
3 | 复合层2 | 卷积层 | 2×2×32@32 | — | 2×2 | — | 12× | 64 | 10×62 | 是 | |
LSTM | — | 768 | — | 32 | 12× | 64 | 11×63 | 否 | |||
池化层 | 2×2 | 1×1 | 12× | 64 | 10×62 | 是 | |||||
4 | 池化层 | 2×2 | — | 2×2 | — | 6× | 32 | 10×62 | 否 | ||
5 | 全连接层 | — | 1024 | — | — | 1024× | 1 | — | 否 | ||
6 | 分类器 | — | 4 | — | — | 4× | 1 | — | 否 |
Tab.6
Diagnostic accuracy of DNN, CNN, and LSTM
组号 | 模型 | ε/% | ||||
---|---|---|---|---|---|---|
K=1 | K=2 | K=3 | K=4 | K=5 | ||
1 | LSTM | 95.91 | 95.23 | 95.02 | 96.14 | 95.06 |
CNN | 85.03 | 87.10 | 87.05 | 86.21 | 86.69 | |
DNN | 59.87 | 65.35 | 63.54 | 61.52 | 63.18 | |
2 | LSTM | 95.35 | 96.26 | 96.19 | 95.33 | 96.16 |
CNN | 84.92 | 86.97 | 87.80 | 86.49 | 87.35 | |
DNN | 64.14 | 61.47 | 65.20 | 62.80 | 58.48 | |
3 | LSTM | 95.88 | 94.62 | 96.24 | 95.56 | 95.56 |
CNN | 87.17 | 86.92 | 87.55 | 85.91 | 84.34 | |
DNN | 59.42 | 63.64 | 65.38 | 62.00 | 63.91 |
[1] | 辛玉, 李舜酩, 王金瑞, 等. 基于迭代经验小波变换的齿轮故障诊断方法[J]. 仪器仪表学报, 2018, 39(11):79-86. |
XIN Yu, LI Shunming, WANG Jinrui, et al. Gear fault diagnosis method based on iterative empirical wavelet transform[J]. Chinese Journal of Scientific Instrument, 2018, 39(11):79-86. | |
[2] | 陈旭阳, 韩振南, 宁少慧. 自适应改进双树复小波变换的齿轮箱故障诊断[J]. 振动、测试与诊断, 2019, 39(5):1016-1022. |
CHEN Xuyang, HAN Zhennan, NING Shaohui. Gearbox fault diagnosis based on adaptive modified dual-tree complex wavelet transform[J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(5):1016-1022. | |
[3] | 朱喜华, 李颖晖, 周飞帆, 等. 基于改进EMD算法的永磁同步电机故障特征提取[J]. 微电机, 2011, 44(2):65-69. |
ZHU Xihua, LI Yinghui, ZHOU Feifan, et al. Feature extraction for PMSM based on ameliorated EMD arithmetic[J]. Micromotors, 2011, 44(2):65-69. | |
[4] | 高冠琪, 黄伟国, 李宁, 等. 基于时频挤压和阶比分析的变转速轴承故障检测方法[J]. 振动与冲击, 2020, 39(3):205-210. |
GAO Guanqi, HUANG Weiguo, LI Ning, et al. Fault detection method for varying rotating speed bearings based on time-frequency squeeze and order analysis[J]. Journal of Vibration and Shock, 2020, 39(3):205-210. | |
[5] | 陈剑, 夏康, 黄凯旋, 等. 基于VMD相对能量熵和自适应ARMA模型的轴承性能退化趋势动态预警[J]. 电子测量与仪器学报, 2020, 34(8):116-123. |
CHEN Jian, XIA Kang, HUANG Kaixuan, et al. Dynamic prediction of bearing performance degradation trend based on VMD relative energy entropy and adaptive ARMA model[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(8):116-123. | |
[6] | 王华庆, 任帮月, 宋浏阳, 等. 基于终止准则改进K-SVD字典学习的稀疏表示特征增强方法[J]. 机械工程学报, 2019, 55(7):35-43. |
WANG Huaqing, REN Bangyue, SONG Liuyang, et al. Sparse representation method based on termination criteria improved K-SVD dictionary learning for feature enhancement[J]. Journal of Mechanical Engineering, 2019, 55(7):35-43. | |
[7] | 唐立力. 基于粗糙遗传BP神经网络的滚动轴承故障诊断[J]. 机械工程与自动化, 2018(3):138-140. |
TANG Lili. Fault diagnosis on rolling bearing based on rough genetic BP neural network[J]. Mechanical Engineering & Automation, 2018(3):138-140. | |
[8] | 吴伟, 郑娟. 基于BP神经网络的齿轮故障诊断[J]. 机械研究与应用, 2015, 28(1):88-90. |
WU Wei, ZHENG Juan. Gear fault diagnosis based on BP neural network[J]. Mechanical Research & Application, 2015, 28(1):88-90. | |
[9] | 张建, 李艳军, 曹愈远, 等. 免疫支持向量机用于航空发动机磨损故障诊断[J]. 北京航空航天大学学报, 2017, 43(7):1419-1425. |
ZHANG Jian, LI Yanjun, CAO Yuyuan, et al. Immune SVM used in wear fault diagnosis of aircraft engine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7):1419-1425. | |
[10] | 贺立敏, 王岘昕, 韩冰. 基于随机森林和支持向量机的船舶柴油机故障诊断[J]. 中国航海, 2017, 40(2):29-33. |
HE Limin, WANG Xianxin, HAN Bing. Fault diagnosis of marine diesel engine based on random forest and support vector machine[J]. Navigation of China, 2017, 40(2):29-33. | |
[11] | CHENG J, WANG P S, LI G, et al. Recent advances in efficient computation of deep convolutional neural networks[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(1):64-77. |
[12] |
GU J X, WANG Z H, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77:354-377.
doi: 10.1016/j.patcog.2017.10.013 URL |
[13] | KRIZHEVSKY A, SUTSKEVER I, HINTON G. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2017, 60(6):84-90. |
[14] | 曲建岭, 余路, 袁涛, 等. 基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J]. 仪器仪表学报, 2018, 39(7):134-143. |
QU Jianling, YU Lu, YUAN Tao, et al. Adaptive fault diagnosis algorithm for rolling bearings based on one-dimensional convolutional neural network[J]. Chinese Journal of Scientific Instrument, 2018, 39(7):134-143. | |
[15] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014, 32(5):86-93. |
[16] | 李恒, 张氢, 秦仙蓉, 等. 基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J]. 振动与冲击, 2018, 37(19):124-131. |
LI Heng, ZHANG Qing, QIN Xianrong, et al. Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network[J]. Journal of Vibration and Shock, 2018, 37(19):124-131. | |
[17] | 韩涛, 袁建虎, 唐建, 等. 基于MWT和CNN的滚动轴承智能复合故障诊断方法[J]. 机械传动, 2016, 40(12):139-143. |
HAN Tao, YUAN Jianhu, TANG Jian, et al. An approach of intelligent compound fault diagnosis of rolling bearing based on MWT and CNN[J]. Journal of Mechanical Transmission, 2016, 40(12):139-143. | |
[18] | WU C Z, JIANG P C, FENG P Z, et al. Faults diagnosis method for gearboxes based on a 1-D convolutional neural network[J]. Journal of Vibration and Shock, 2018, 37(22):51-56. |
[19] | 李东东, 王浩, 杨帆, 等. 基于一维卷积神经网络和Soft-Max分类器的风电机组行星齿轮箱故障检测[J]. 电机与控制应用, 2018, 45(6):80-87. |
LI Dongdong, WANG Hao, YANG Fan, et al. Fault detection of wind turbine planetary gear box using 1D convolution neural networks and soft-max classifier[J]. Electric Machines & Control Application, 2018, 45(6):80-87. | |
[20] | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Hawaii, USA: IEEE, 2017: 936-944. |
[1] | LI Dengpan, REN Xiaoming, YAN Nannan. Real-Time Detection of Insulator Drop String Based on UAV Aerial Photography [J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 994-1003. |
[2] | XU Yong, CAI Yunze, SONG Lin. Review of Research on Condition Assessment of Nuclear Power Plant Equipment Based on Data-Driven [J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 267-278. |
[3] | NIE Rui, WANG Hongru. Fault Diagnosis of UAV Formation Actuator Based on Neural Network Observer [J]. Air & Space Defense, 2022, 5(2): 32-41. |
[4] | MA Hangyu, ZHOU Di, WEI Yujie, WU Wei, PAN Ershun. Intelligent Bearing Fault Diagnosis Based on Adaptive Deep Belief Network Under Variable Working Conditions [J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1368-1377. |
[5] | HU Xiaoqiang,ZHONG Xunyu,ZHANG Xiaoli,PENG Xiafu,HE Ying. A Two-Level Fault Diagnosis Method for Gyro-Quadruplet Assisted by Support Vector Machine [J]. Journal of Shanghai Jiaotong University, 2020, 54(11): 1151-1156. |
[6] | LU Cheng,XU Tingxue,WANG Hong. Fault Diagnosis of Terminal Guidance Radar Based on Attribute Granulation Clustering and Echo State Network [J]. Journal of Shanghai Jiaotong University, 2018, 52(9): 1112-1119. |
[7] | YU Kun (俞昆), TAN Jiwen (谭继文), LIN Tianran (林天然). Fault Diagnosis of Rolling Element Bearing Using Multi-Scale Lempel-Ziv Complexity and Mahalanobis Distance Criterion [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 696-701. |
[8] | DENG Shijie (邓士杰), TANG Liwei (唐力伟), ZHANG Xiaotao (张晓涛). Research of Adaptive Neighborhood Incremental Principal Component Analysis and Locality Preserving Projection Manifold Learning Algorithm [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(2): 269-275. |
[9] |
JIA Lei,DONG Wei,SUN Xinya,JI Yindong,CHEN Hua.
Soft Faults Diagnosis of Track Circuit with Tolerance Based on NodeVoltage Increments [J]. Journal of Shanghai Jiaotong University, 2017, 51(6): 679-685. |
[10] | WU Bin1* (吴斌), XI Lifeng2 (奚立峰), FAN Sixia1 (范思遐), ZHAN Jian1 (占健). Fault Diagnosis for Wind Turbine Based on Improved Extreme Learning Machine [J]. Journal of shanghai Jiaotong University (Science), 2017, 22(4): 466-473. |
[11] | LIU Yinhua1* (刘银华), YE Xialiang1 (叶夏亮), JIN Sun2 (金隼). A Bayesian Based Process Monitoring and Fixture Fault Diagnosis Approach in the Auto Body Assembly Process [J]. Journal of shanghai Jiaotong University (Science), 2016, 21(2): 164-172. |
[12] | ZHANG Wei1* (张 伟), HOU Yue-min1,2 (侯悦民). Systematic Safety Analysis Method for Power Generating Equipment [J]. Journal of shanghai Jiaotong University (Science), 2015, 20(4): 508-512. |
[13] | SHANG Qun-li1 (尚群立), ZHANG Zhen2 (张 镇), XU Xiao-bin2* (徐晓滨). Dynamic Fault Diagnosis Using the Improved Linear Evidence Updating Strategy [J]. Journal of shanghai Jiaotong University (Science), 2015, 20(4): 427-436. |
[14] | REN Fang-yu (任方宇), SI Shu-bin* (司书宾), CAI Zhi-qiang (蔡志强), ZHANG Shuai (张帅). Transformer Fault Analysis Based on Bayesian Networks and Importance Measures [J]. Journal of shanghai Jiaotong University (Science), 2015, 20(3): 353-357. |
[15] | BAO Yong-lin (鲍泳林). Primary Research on Real-Time Fault Diagnosis Platform for Fuel Tank System of an Aircraft [J]. Journal of shanghai Jiaotong University (Science), 2015, 20(3): 358-362. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||