[1] |
王军锋, 刘兴钊. 合成孔径雷达运动目标检测的研究进展[J]. 上海交通大学学报, 2018, 52(10): 1273-1279.
|
|
WANG Junfeng, LIU Xingzhao. Development in SAR moving-target detection[J]. Journal of Shanghai Jiao Tong University, 2018, 52(10): 1273-1279.
|
[2] |
IGLESIAS V, GRAJAL J, ROYER P, et al. Real-time low-complexity automatic modulation classifier for pulsed radar signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 108-126.
doi: 10.1109/TAES.2014.130183
URL
|
[3] |
李波波, 幸涛. 基于报文数据的雷达侦察系统侦察能力评估[J]. 现代信息科技, 2020, 4(23): 54-57.
|
|
LI Bobo, XING Tao. Evaluation on reconnaissance capability of radar reconnaissance system based on message data[J]. Modern Informationn Technology, 2020, 4(23): 54-57
|
[4] |
孟磊, 曲卫, 蔡凯, 等. 基于机器学习的雷达辐射源识别方法综述[J]. 兵器装备工程学报, 2020, 41(10): 16-21.
|
|
MENG Lei, QU Wei, CAI Kai, et al. Overview of radar emitter identification based on machine learning[J]. Journal of Ordnance Equipment Engineering, 2020, 41(10): 16-21.
|
[5] |
JIANG W, REN Y H, LIU Y, et al. A method of radar target detection based on convolutional neural network[J]. Neural Computing and Applications, 2021, 33(16): 9835-9847.
doi: 10.1007/s00521-021-05753-w
URL
|
[6] |
ZHU J D, ZHAO Y J, TANG J. Automatic recognition of radar signals based on time-frequency image character[C]∥IET International Radar Conference 2013. Xi’an, China: IET, 2013: 1-6.
|
[7] |
LIU Z P, WANG L D, FENG Y T, et al. A recognition method for time-frequency overlapped waveform-agile radar signals based on matrix transformation and multi-scale center point detection[J]. Applied Acoustics, 2021, 175: 107855.
doi: 10.1016/j.apacoust.2020.107855
URL
|
[8] |
陈昌孝, 何明浩, 徐璟, 等. 基于模糊函数相像系数的雷达辐射源信号分选[J]. 电波科学学报, 2014, 29(2): 260-264.
|
|
CHEN Changxiao, HE Minghao, XU Jing, et al. Radar emitter signal sorting based on resemblance coefficient of ambiguity function[J]. Chinese Journal of Radio Science, 2014, 29(2): 260-264.
|
[9] |
王功明, 陈世文, 黄洁, 等. 基于多重同步压缩变换的雷达辐射源分选识别[J]. 现代雷达, 2020, 42(3): 49-56.
|
|
WANG Gongming, CHEN Shiwen, HUANG Jie, et al. Radar emitter sorting and recognition based on multi-synchrosqueezing transform[J]. Modern Radar, 2020, 42(3): 49-56.
|
[10] |
VERMA S, AGRAWAL R. Deep neural network in medical image processing[M]∥Handbook of deep learning in biomedical engineering. Amsterdam, USA: Elsevier, 2021: 271-292.
|
[11] |
王功明, 陈世文, 黄洁, 等. 基于迁移深度学习的雷达信号分选识别[J]. 计算机科学与应用, 2019, 9(9): 1761-1788.
|
|
WANG Gongming, CHEN Shiwen, HUANG Jie, et al. Radar signal sorting and recognition based on transferred deep learning[J]. Computer Science and Application, 2019, 9(9): 1761-1788.
doi: 10.12677/CSA.2019.99198
URL
|
[12] |
谢存祥, 张立民, 钟兆根. 基于时频特征提取和残差神经网络的雷达信号识别[J]. 系统工程与电子技术, 2021, 43(4): 917-926.
|
|
XIE Cunxiang, ZHANG Limin, ZHONG Zhaogen. Radar signal recognition based on time-frequency feature extraction and residual neural network[J]. Systems Engineering and Electronics, 2021, 43(4): 917-926.
|
[13] |
WEI S J, QU Q Z, SU H, et al. Intra-pulse modulation radar signal recognition based on CLDN network[J]. IET Radar, Sonar & Navigation, 2020, 14(6): 803-810.
doi: 10.1049/iet-rsn.2019.0436
URL
|
[14] |
ALASKAR H. Deep learning-based model architecture for time-frequency images analysis[J]. International Journal of Advanced Computer Science and Applications, 2018, 9(12): 486-494.
|
[15] |
FENG Z P, LIANG M, CHU F L. Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples[J]. Mechanical Systems and Signal Processing, 2013, 38(1): 165-205.
doi: 10.1016/j.ymssp.2013.01.017
URL
|
[16] |
LIU Y J, XIAO P, WU H C, et al. LPI radar signal detection based on radial integration of Choi-Williams time-frequency image[J]. Journal of Systems Engineering and Electronics, 2015, 26(5): 973-981.
doi: 10.1109/JSEE.2015.00106
URL
|
[17] |
YU G, WANG Z H, ZHAO P. Multisynchrosqueezing transform[J]. IEEE Transactions on Industrial Electronics, 2019, 66(7): 5441-5455.
doi: 10.1109/TIE.2018.2868296
URL
|
[18] |
LI D X, JIA H Y, YE Y C, et al. High power microwave signal detection based on second order multisynchrosqueezing transform[J]. Journal of Physics: Conference Series, 2020, 1617(1): 012049.
doi: 10.1088/1742-6596/1617/1/012049
URL
|
[19] |
LI Z Y. Modulation recognition of communication signals based on deep learning joint model[J]. Journal of Physics: Conference Series, 2021, 1856(1): 012042.
doi: 10.1088/1742-6596/1856/1/012042
URL
|