Journal of Shanghai Jiao Tong University ›› 2022, Vol. 56 ›› Issue (7): 868-876.doi: 10.16183/j.cnki.jsjtu.2021.186
• Electronic Information and Electrical Engineering • Previous Articles Next Articles
XU Chenhui, YU Fanghui, HE Defeng()
Received:
2021-06-02
Online:
2022-07-28
Published:
2022-08-16
Contact:
HE Defeng
E-mail:hdfzj@zjut.edu.cn.
CLC Number:
XU Chenhui, YU Fanghui, HE Defeng. Disturbance-Blocking-Based Distributed Receding Horizon Estimation of Flexible Joint Robots[J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 868-876.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.186
[1] |
SPONG M W. Modeling and control of elastic joint robots[J]. Journal of Dynamic Systems, Measurement, and Control, 1987, 109(4): 310-318.
doi: 10.1115/1.3143860 URL |
[2] |
KIM M J, BECK F, OTT C, et al. Model-free friction observers for flexible joint robots with torque measurements[J]. IEEE Transactions on Robotics, 2019, 35(6): 1508-1515.
doi: 10.1109/TRO.2019.2926496 URL |
[3] |
LING S, WANG H Q, LIU P X. Adaptive fuzzy tracking control of flexible-joint robots based on command filtering[J]. IEEE Transactions on Industrial Electronics, 2020, 67(5): 4046-4055.
doi: 10.1109/TIE.2019.2920599 URL |
[4] |
KIM J, CROFT E A. Full-state tracking control for flexible joint robots with singular perturbation techniques[J]. IEEE Transactions on Control Systems Technology, 2019, 27(1): 63-73.
doi: 10.1109/TCST.2017.2756962 URL |
[5] |
LIU X, ZHAO F, GE S S, et al. End-effector force estimation for flexible-joint robots with global friction approximation using neural networks[J]. IEEE Transactions on Industrial Informatics, 2019, 15(3): 1730-1741.
doi: 10.1109/TII.2018.2876724 URL |
[6] | 于仕泽, 王周义, 戴振东, 等. 一种面向航天需求的仿生柔性机械臂的设计[J]. 机械制造与自动化, 2020, 49(1): 134-137. |
YU Shize, WANG Zhouyi, DAI Zhendong, et al. Design of bionic flexible arm in aerospace demand[J]. Machine Building & Automation, 2020, 49(1): 134-137. | |
[7] | ZOU S Z, PAN B, FU Y L, et al. Extended high-gain observer based adaptive control of flexible-joint surgical robot[C]∥2016 IEEE International Conference on Robotics and Biomimetics. Qingdao, China: IEEE, 2016: 2128-2133. |
[8] | 陈晓云. 车载柔性机械臂系统轨迹跟踪补偿控制研究[J]. 自动化与仪器仪表, 2016(6): 90-91. |
CHEN Xiaoyun. On-board flexible manipulator system trajectory tracking compensation control research[J]. Automation & Instrumentation, 2016(6): 90-91. | |
[9] |
KIM M J, CHUNG W K. Disturbance-observer-based PD control of flexible joint robots for asymptotic convergence[J]. IEEE Transactions on Robotics, 2015, 31(6): 1508-1516.
doi: 10.1109/TRO.2015.2477957 URL |
[10] |
LIU X, YANG C G, CHEN Z G, et al. Neuro-adaptive observer based control of flexible joint robot[J]. Neurocomputing, 2018, 275: 73-82.
doi: 10.1016/j.neucom.2017.05.011 URL |
[11] |
KIM M J, BECK F, OTT C, et al. Model-free friction observers for flexible joint robots with torque measurements[J]. IEEE Transactions on Robotics, 2019, 35(6): 1508-1515.
doi: 10.1109/TRO.2019.2926496 URL |
[12] |
ZOU L, WANG Z D, HAN Q L, et al. Moving horizon estimation for networked time-delay systems under round-robin protocol[J]. IEEE Transactions on Automatic Control, 2019, 64(12): 5191-5198.
doi: 10.1109/TAC.2019.2910167 URL |
[13] |
LIU A D, ZHANG W A, CHEN M Z Q, et al. Moving horizon estimation for mobile robots with multirate sampling[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 1457-1467.
doi: 10.1109/TIE.2016.2611458 URL |
[14] |
HAN C Y, LI C C, HE F, et al. Receding horizon estimation for linear discrete-time systems with multi-channel observation delays[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(2): 478-484.
doi: 10.1109/JAS.2018.7511261 URL |
[15] |
XU Y, ZHOU J Y, RAO H X, et al. Reset moving horizon estimation for quantized discrete time systems[J]. IEEE Transactions on Automatic Control, 2021, 66(9): 4199-4205.
doi: 10.1109/TAC.2020.3037140 URL |
[16] | 何德峰, 俞芳慧, 徐晨辉. 网联车辆协同巡航系统快速滚动时域状态估计[J]. 控制理论与应用, 2021, 38(4): 457-466. |
HE Defeng, YU Fanghui, XU Chenhui. Fast receding horizon state estimation of cooperative cruise systems of connected vehicles[J]. Control Theory & Applications, 2021, 38(4): 457-466. | |
[17] | 刘帅, 赵国荣, 曾宾, 等. 带丢包和量化的参数不确定系统滚动时域估计[J]. 系统工程与电子技术, 2020, 42(4): 912-918. |
LIU Shuai, ZHAO Guorong, ZENG Bin, et al. Moving horizon estimation for uncertain systems with packet dropouts and quantization[J]. Systems Engineering and Electronics, 2020, 42(4): 912-918. | |
[18] | 刘帅, 赵国荣, 曾宾, 等. 测量数据丢失的随机不确定系统滚动时域估计[J]. 控制与决策, 2021, 36(2): 450-456. |
LIU Shuai, ZHAO Guorong, ZENG Bin, et al. Moving horizon estimation for stochastic uncertain system with missing measurements[J]. Control and Decision, 2021, 36(2): 450-456. | |
[19] |
FARINA M, FERRARI-TRECATE G, SCATTOLINI R. Distributed moving horizon estimation for linear constrained systems[J]. IEEE Transactions on Automatic Control, 2010, 55(11): 2462-2475.
doi: 10.1109/TAC.2010.2046058 URL |
[20] |
BATTISTELLI G. Distributed moving-horizon estimation with arrival-cost consensus[J]. IEEE Transactions on Automatic Control, 2019, 64(8): 3316-3323.
doi: 10.1109/TAC.2018.2879598 URL |
[21] |
YIN X Y, LIU J F. Distributed moving horizon state estimation of two-time-scale nonlinear systems[J]. Automatica, 2017, 79: 152-161.
doi: 10.1016/j.automatica.2017.01.023 URL |
[22] | LI H P, SHI Y, YAN W S. Distributed receding horizon estimation for sensor networks with improved consensus strategy[C]∥Proceedings of the 33rd Chinese Control Conference. Nanjing, China: IEEE, 2014: 316-321. |
[23] | VENTURINO A, BERTRAND S, MANIU C S, et al. Distributed moving horizon estimation with pre-estimating observer[C]∥2020 24th International Conference on System Theory, Control and Computing. Sinaia, Romania: IEEE, 2020: 174-179. |
[24] |
ZENG J, LIU J F. Distributed moving horizon state estimation: Simultaneously handling communication delays and data losses[J]. Systems & Control Letters, 2015, 75: 56-68.
doi: 10.1016/j.sysconle.2014.11.007 URL |
[25] |
LEE J H, CHIKKULA Y, YU Z H, et al. Improving computational efficiency of model predictive control algorithm using wavelet transformation[J]. International Journal of Control, 1995, 61(4): 859-883.
doi: 10.1080/00207179508921935 URL |
[26] |
CAGIENARD R, GRIEDER P, KERRIGAN E C, et al. Move blocking strategies in receding horizon control[J]. Journal of Process Control, 2007, 17(6): 563-570.
doi: 10.1016/j.jprocont.2007.01.001 URL |
[27] |
SHEKHAR R C, MANZIE C. Optimal move blocking strategies for model predictive control[J]. Automatica, 2015, 61: 27-34.
doi: 10.1016/j.automatica.2015.07.030 URL |
[28] |
SON S H, OH T H, KIM J W, et al. Move blocked model predictive control with improved optimality using semi-explicit approach for applying time-varying blocking structure[J]. Journal of Process Control, 2020, 92: 50-61.
doi: 10.1016/j.jprocont.2020.04.002 URL |
[29] |
JUNG T Y, JANG H, LEE J H. Move blocking strategy applied to re-entrant manufacturing line scheduling[J]. International Journal of Control, Automation and Systems, 2015, 13(2): 410-418.
doi: 10.1007/s12555-014-0243-9 URL |
[1] | YAN Zheng,KONG Xiangrui,XU Xiaoyuan,XIE Wei. Applications of Micro Synchronous Phasor Measurement Units in State Estimation of Smart Distribution Network [J]. Journal of Shanghai Jiaotong University, 2018, 52(10): 1195-1205. |
[2] | LI Xiongjie1,2,ZHOU Donghua2. Fault Diagnosis Based on Particle Filter for Hybrid System [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 849-854. |
[3] | KONG Qing-jie, CHEN Yi-kai, LIU Yun-cai. RealTime Traffic State Estimation Based on Evidential Fusion [J]. Journal of Shanghai Jiaotong University, 2008, 42(10): 1682-1686. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||