J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (5): 923-934.doi: 10.1007/s12204-023-2683-y
收稿日期:
2023-06-29
接受日期:
2023-07-20
出版日期:
2025-09-26
发布日期:
2023-12-21
周博玮a,邢冠宇b,刘艳丽a,b
Received:
2023-06-29
Accepted:
2023-07-20
Online:
2025-09-26
Published:
2023-12-21
摘要: 在轨道交通智慧驾驶中,可靠的障碍物检测系统是列车安全的重要保障,其中对铁轨区域的检测直接影响系统辨别危险目标的准确性。铁轨线与车道线在图像中都呈现为细长线条状,但是轨道场景的环境更复杂,铁轨线的颜色更难以与背景区分。相较而言,目前已经有许多基于深度学习的车道线检测算法,铁轨线检测却缺乏公开的数据集以及针对性的深度学习检测算法。为此本文构建了一个铁轨图像数据集RailwayLine并对铁轨线进行标注用于检测模型的训练和测试。该数据集包含单轨道、多轨道、直轨、弯轨、交叉 、遮挡、模糊和不同光照条件等丰富的铁轨图像;针对目前缺少基于深度学习的铁轨线检测算法的问题,我们改进了在车道线方面性能优异的CLRNet算法,提出了铁轨线检测算法CLRNet-R;针对铁轨线在成像中线条细长,所占像素少,难以从复杂背景中区分的问题,我们引入注意力机制,提升全局特征提取能力,并增加语义分割头,利用铁轨二值概率增强铁轨线区域的特征;针对原CLRNet算法识别弯轨性能差、输出线条不光滑的问题,我们改进了原框架中线条交并比计算的权重分配,并提出两种基于局部斜率的损失,优化模型局部采样点的训练约束,提升模型对弯轨的拟合性能,获取光滑、稳定的铁轨线检测结果。本文通过实验证明,与其他主流的车道线检测算法相比,所提出的算法在铁轨线检测任务中具有更好的性能。
中图分类号:
. 基于改进CLRNet的铁轨线检测算法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 923-934.
ZHOU Bowei, XING Guanyu, LIU Yanli. Rail Line Detection Algorithm Based on Improved CLRNet[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 923-934.
[1] LIESENKOTTER B H C. Obstruction detection for people movers operating on conventional small branch railways[C]//IEEE International Conference on Intelligent Vehicles. Stuttgart: IEEE, 1998: 280-284. [2] WOHLFEIL J. Vision based rail track and switch recognition for self-localization of trains in a rail network [C]//2011 IEEE Intelligent Vehicles Symposium. Baden-Baden: IEEE, 2011: 1025-1030. [3] NIU H X, HOU T. Fast detection study of foreign object intrusion on railway track [J]. Archives of Transport, 2018, 47(3): 79-89. [4] BALLARD D H. Generalizing the Hough transform to detect arbitrary shapes [J]. Pattern Recognition, 1981, 13(2): 111-122. [5] KALMAN R E. A new approach to linear filtering and prediction problems [J]. Journal of Basic Engineering, 1960, 82(1): 35-45. [6] ZHANG Y Z, GUO W. Intelligent detection and early warning system of railway track[M]// Artificial intelligence and security. Cham: Springer, 2021: 505-515. [7] NEVEN D, DE BRABANDERE B, GEORGOULIS S, et al. Towards end-to-end lane detection: An instance segmentation approach [C]//2018 IEEE Intelligent Vehicles Symposium. Changshu: IEEE, 2018: 286-291. [8] ZHENG T, FANG H, ZHANG Y, et al. RESA: Recurrent feature-shift aggregator for lane detection [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(4): 3547-3554. [9] TABELINI L, BERRIEL R, PAIXÃO T M, et al. PolyLaneNet: lane estimation via deep polynomial regression [C]//2020 25th International Conference on Pattern Recognition. Milan: IEEE, 2021: 6150-6156. [10] QU Z, JIN H, ZHOU Y, et al. Focus on local: Detecting lane marker from bottom up via key point [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 14117-14125. [11] ZHENG T, HUANG Y F, LIU Y, et al. CLRNet: cross layer refinement network for lane detection [C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 888-897. [12] TABELINI L, BERRIEL R, PAIXÃO T M, et al. Keep your eyes on the lane: Real-time attention-guided lane detection [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 294-302. [13] QI Z Q, TIAN Y J, SHI Y. Efficient railway tracks detection and turnouts recognition method using HOG features [J]. Neural Computing and Applications, 2013, 23(1): 245-254. [14] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005: 886-893. [15] NASSU B T, UKAI M. Rail extraction for driver support in railways [C]//2011 IEEE Intelligent Vehicles Symposium. Baden-Baden: IEEE, 2011: 83-88. [16] CANNY J. A computational approach to edge detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6): 679-698. [17] KALELI F, AKGUL Y S. Vision-based railroad track extraction using dynamic programming [C]//2009 12th International IEEE Conference on Intelligent Transportation Systems. St. Louis: IEEE, 2009: 1-6. [18] HE D Q, ZOU Z H, CHEN Y J, et al. Rail transit obstacle detection based on improved CNN [J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-14. [19] RAMPRIYA R S, SUGANYA R, SABARINATHAN, et al. Object detection in railway track using deep learning techniques[M]// Topical drifts in intelligent computing. Singapore: Springer, 2022: 107-115. [20] YU M Y, YANG P, WEI S. Railway obstacle detection algorithm using neural network [C]// 6th International Conference on Computer-Aided Design, Manufacturing, Modeling and Simulation (CDMMS 2018). Busan: AIP, 2018: 040017. [21] YE T, WANG B C, SONG P, et al. Automatic railway traffic object detection system using feature fusion refine neural network under shunting mode [J]. Sensors, 2018, 18(6): 1916. [22] YE T, ZHANG X, ZHANG Y, et al. Railway traffic object detection using differential feature fusion convolution neural network [J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1375-1387. [23] LI J, ZHOU F Q, YE T. Real-world railway traffic detection based on faster better network [J]. IEEE Access, 2018, 6: 68730-68739. [24] WANG Y, TEOH E K, SHEN D G. Lane detection and tracking using B-Snake [J]. Image and Vision Computing, 2004, 22(4): 269-280. [25] MCCALL J C, TRIVEDI M M. Video-based lane estimation and tracking for driver assistance: Survey, system, and evaluation [J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(1): 20-37. [26] MA C, XIE M. A method for lane detection based on color clustering [C]//2010 Third International Conference on Knowledge Discovery and Data Mining. Phuket: IEEE, 2010: 200-203. [27] CÁCERES HERNÁNDEZ D, KURNIANGGORO L, FILONENKO A, et al. Real-time lane region detection using a combination of geometrical and image features [J]. Sensors, 2016, 16(11): 1935. [28] LI Y D, CHEN L G, HUANG H B, et al. Nighttime lane markings recognition based on Canny detection and Hough transform [C]//2016 IEEE International Conference on Real-time Computing and Robotics. Angkor Wat: IEEE, 2016: 411-415. [29] OTSU N. A threshold selection method from gray-level histograms [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. [30] DING Y, XU Z, ZHANG Y B, et al. Fast lane detection based on bird’s eye view and improved random sample consensus algorithm [J]. Multimedia Tools and Applications, 2017, 76(21): 22979-22998. [31] FISCHLER M A, BOLLES R C. Random sample consensus [J]. Communications of the ACM, 1981, 24(6): 381-395. [32] LEE M, JANG C, SUNWOO M. Probabilistic lane detection and lane tracking for autonomous vehicles using a cascade particle filter [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2015, 229(12): 1656-1671. [33] WANG J T, HONG W, GONG L. Lane detection algorithm based on density clustering and RANSAC [C]//2018 Chinese Control and Decision Conference. Shenyang: IEEE, 2018: 919-924. [34] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]// 2nd International Conference on Knowledge Discovery and Data Mining. Menlo Park: AAAI Press, 1996: 226-231. [35] PAN X G, SHI J P, LUO P, et al. Spatial as deep: Spatial CNN for traffic scene understanding [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 7276-7283. [36] ZOU Q, JIANG H W, DAI Q Y, et al. Robust lane detection from continuous driving scenes using deep neural networks [J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 41-54. [37] GHAFOORIAN M, NUGTEREN C, BAKA N, et al. EL-GAN: Embedding loss driven generative adversarial networks for lane detection[M]// Computer vision – ECCV 2018 Workshops. Cham: Springer, 2019: 256-272. [38] LI X, LI J, HU X L, et al. Line-CNN: End-to-end traffic line detection with line proposal unit [J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(1): 248-258. [39] FENG Z Y, GUO S H, TAN X, et al. Rethinking efficient lane detection via curve modeling [C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 17041-17049. [40] WANG J S, MA Y C, HUANG S F, et al. A keypoint-based global association network for lane detection [C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 1382-1391. [41] LIU L Z, CHEN X H, ZHU S Y, et al. CondLaneNet: a top-to-down lane detection framework based on conditional convolution [C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 3753-3762. [42] LIU K, YANG K F, ZHANG J H, et al. S2SNet: A pretrained neural network for superconductivity discovery [M]//Proceedings of the thirty-first international joint conference on artificial intelligence. San Francisco: Margan Kaufmann, 2022: 5101-5107. [43] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. |
[1] | 张志远, 胡冀苏, 张跃跃, 钱旭升, 周志勇, 戴亚康. 注意力引导多任务学习的前列腺癌盆腔淋巴结转移预测[J]. 上海交通大学学报, 2025, 59(8): 1216-1224. |
[2] | . 基于ALBERT的中国诗酒文化命名实体识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1065-1072. |
[3] | . CenterLineFormer:基于单车载相机的车道中心线生成方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 1009-1017. |
[4] | . MAGPNet: 基于多域注意力引导的红外弱小目标检测网络[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 935-951. |
[5] | . 基于多注意力机制的轻量化人体姿态估计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 899-910. |
[6] | . 基于多尺度融合和自适应标签相关性的多标签图像分类模型[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 889-898. |
[7] | . 基于多特征提取方法的多场景烟雾检测[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 866-879. |
[8] | . CT-MFENet:基于全局-局部特征融合的用于视网膜血管分割的上下文Transformer和多尺度特征提取网络[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 668-682. |
[9] | . 基于蝶形空洞几何蒸馏的磁共振成像重建[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 591-599. |
[10] | . 迁移学习和注意机制融合用于CT图像COVID-19病灶分割的计算机辅助诊断[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 566-581. |
[11] | 薛昂, 姜恩宇, 张文涛, 林顺富, 米阳. 基于窗口自注意力网络与YOLOv5融合的输电线路通道异物检测[J]. 上海交通大学学报, 2025, 59(3): 413-423. |
[12] | 王可, 刘奕阳, 杨杰, 鲁爱国, 李哲, 徐明亮. 基于自适应特征增强和融合的舰载机着舰拉制状态识别[J]. 上海交通大学学报, 2025, 59(2): 274-282. |
[13] | . 基于空间特征学习与多粒度特征融合的行人重识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 363-374. |
[14] | 李楚晨, 唐善军, 赵冰青. 一种基于无人机探测图像区块信息的弱小目标检测算法[J]. 空天防御, 2025, 8(1): 41-47. |
[15] | 丁黎辉1, 2, 付立军1, 3, 杨光4, 5, 6, 万林4, 5, 常志军7. 基于视频的婴儿癫痫性痉挛综合征检测:建模、检测与评估[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 1-9. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||