[1] |
ZHANG M, MCDAID A, VEALE A J, et al. Adaptive trajectory tracking control of a parallel ankle rehabilitation robot with joint-space force distribution [J]. IEEE Access, 2019, 7: 85812-85820.
|
[2] |
SHIMMURA T, ICHIKARI R, OKUMA T. Human– robot hybrid service system introduction for enhancing labor and robot productivity [M]//Advances in production management systems. Cham: Springer, 2020: 661-669.
|
[3] |
ROVEDA L, PALLUCCA G, PEDROCCHI N, et al. Iterative learning procedure with reinforcement for high-accuracy force tracking in robotized tasks [J]. IEEE Transactions on Industrial Informatics, 2018, 14(4): 1753-1763.
|
[4] |
HOGAN N. Impedance control: An approach to manipulation: Part II—Implementation [J]. Journal of Dynamic Systems, Measurement, and Control, 1985, 107(1): 8-16.
|
[5] |
DOHRING M, NEWMAN W. The passivity of natural admittance control implementations [C]//IEEE International Conference on Robotics and Automation. Taipei, China: IEEE, 2003: 3710-3715.
|
[6] |
RIENER R, LUNENBURGER L, JEZERNIK S, et al. Patient-cooperative strategies for robot-aided treadmill training: First experimental results [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2005, 13(3): 380-394.
|
[7] |
MAITHANI H, CORRALES-RAMON J A, MEZOUAR Y. Trust-based variable impedance control for cooperative physical human-robot interaction [C]//IEEE International Conference on Mechatronics. Ilmenau, Germany: IEEE, 2019: 706-711.
|
[8] |
MODARES H, RANATUNGA I, LEWIS F L, et al. Optimized assistive human-robot interaction using reinforcement learning [J]. IEEE Transactions on Cybernetics, 2016, 46(3):655-667.
|
[9] |
WANG C, LI Y, GE S S, et al. Continuous critic learning for robot control in physical human-robot interaction [C]//13th International Conference on Control, Automation and Systems. Gwangju, Korea: IEEE, 2013: 833-838.
|
[10] |
TEE K P, GE S S, TAY E H. Barrier Lyapunov Functions for the control of output-constrained nonlinear systems [J]. Automatica, 2009, 45(4): 918-927.
|
[11] |
ZHANG S, DONG Y, OUYANG Y, et al. Adaptive neural control for robotic manipulators with output constraints and uncertainties [J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(11): 5554-5564.
|
[12] |
YU X, LI Y, ZHANG S, et al. Estimation of human impedance and motion intention for constrained human-robot interaction [J]. Neurocomputing, 2020, 390: 268-279.
|
[13] |
HE W, XUE C, YU X, et al. Admittance-based controller design for physical human-robot interaction in the constrained task space [J]. IEEE Transactions on Automation Science and Engineering, 2020, 17(4):1937-1949.
|
[14] |
LI J, YOU B, DING L, et al. A novel bilateral haptic teleoperation approach for hexapod robot walking and manipulating with legs [J]. Robotics and Autonomous Systems, 2018, 108: 1-12.
|
[15] |
CREMER S, DAS S K, WIJAYASINGHE I B, et al. Model-free online neuroadaptive controller with intent estimation for physical human–robot interaction [J]. IEEE Transactions on Robotics, 2020, 36(1): 240-253.
|
[16] |
WANG Y, LIN Q, ZHOU L, et al. Adaptive radial basis function neural network control of a wire-driven parallel robot based on local model approximation [J]. Control Theory & Applications, 2021, 38(3): 380-390 (in Chinese).
|
[17] |
YOU B, LI J, DING L, et al. Semi-autonomous bilateral teleoperation of hexapod robot based on haptic force feedback [J]. Journal of Intelligent & Robotic Systems, 2018, 91(3/4): 583-602.
|
[18] |
LI Y, TEE K P, CHAN W L, et al. Continuous role adaptation for human-robot shared control [J]. IEEE Transactions on Robotics, 2015, 31(3): 672-681.
|
[19] |
LI Y, GE S S. Human-robot collaboration based on motion intention estimation [J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(3): 1007-1014.
|
[20] |
YANG C, PENG G, LI Y, et al. Neural networks enhanced adaptive admittance control of optimized robot-environment interaction [J]. IEEE Transactions on Cybernetics, 2019, 49(7): 2568-2579. [21] FURUTA K, KADO Y, SHIRATORI S. Assisting control in human adaptive mechatronics: Single ball juggling [C]//IEEE Conference on Computer Aided Control System Design. Munich, Germany: IEEE, 2006: 545-550.
|
[22] |
JIANG Y, JIANG Z. Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics [J]. Automatica, 2012, 48(10): 2699-2704.
|
[23] |
BIAN T, JIANG Z. Value iteration and adaptive dynamic programming for data-driven adaptive optimal control design [J]. Automatica, 2016, 71: 348-360.
|
[24] |
RIZVI S, LIN Z. Reinforcement learning-based linear quadratic regulation of continuous-time systems using dynamic output feedback [J]. IEEE Transactions on Cybernetics, 2019, 50(11): 4670-4679. [25] ZHEN H, FANG Z. Research on tracking error of robot arm based on adaptive neural network control [J]. Machinery Design & Manufacture, 2019(6): 139-141 (in Chinese).
|