J Shanghai Jiaotong Univ Sci ›› 2022, Vol. 27 ›› Issue (5): 589-601.doi: 10.1007/s12204-022-2460-3
• Automation System & Theory • Next Articles
YU Xinyi (禹鑫燚), WU Jiaxin (吴加鑫), XU Chengjun (许成军), LUO Huizhen (罗惠珍), OU Linlin∗ (欧林林)
Received:
2020-12-25
Online:
2022-09-28
Published:
2022-09-03
CLC Number:
YU Xinyi (禹鑫燚), WU Jiaxin (吴加鑫), XU Chengjun (许成军), LUO Huizhen (罗惠珍), OU Linlin∗ (欧林林). Adaptive Human-Robot Collaboration Control Based on Optimal Admittance Parameters[J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 589-601.
[1] | ZHANG M, MCDAID A, VEALE A J, et al. Adaptive trajectory tracking control of a parallel ankle rehabilitation robot with joint-space force distribution [J]. IEEE Access, 2019, 7: 85812-85820. |
[2] | SHIMMURA T, ICHIKARI R, OKUMA T. Human– robot hybrid service system introduction for enhancing labor and robot productivity [M]//Advances in production management systems. Cham: Springer, 2020: 661-669. |
[3] | ROVEDA L, PALLUCCA G, PEDROCCHI N, et al. Iterative learning procedure with reinforcement for high-accuracy force tracking in robotized tasks [J]. IEEE Transactions on Industrial Informatics, 2018, 14(4): 1753-1763. |
[4] | HOGAN N. Impedance control: An approach to manipulation: Part II—Implementation [J]. Journal of Dynamic Systems, Measurement, and Control, 1985, 107(1): 8-16. |
[5] | DOHRING M, NEWMAN W. The passivity of natural admittance control implementations [C]//IEEE International Conference on Robotics and Automation. Taipei, China: IEEE, 2003: 3710-3715. |
[6] | RIENER R, LUNENBURGER L, JEZERNIK S, et al. Patient-cooperative strategies for robot-aided treadmill training: First experimental results [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2005, 13(3): 380-394. |
[7] | MAITHANI H, CORRALES-RAMON J A, MEZOUAR Y. Trust-based variable impedance control for cooperative physical human-robot interaction [C]//IEEE International Conference on Mechatronics. Ilmenau, Germany: IEEE, 2019: 706-711. |
[8] | MODARES H, RANATUNGA I, LEWIS F L, et al. Optimized assistive human-robot interaction using reinforcement learning [J]. IEEE Transactions on Cybernetics, 2016, 46(3):655-667. |
[9] | WANG C, LI Y, GE S S, et al. Continuous critic learning for robot control in physical human-robot interaction [C]//13th International Conference on Control, Automation and Systems. Gwangju, Korea: IEEE, 2013: 833-838. |
[10] | TEE K P, GE S S, TAY E H. Barrier Lyapunov Functions for the control of output-constrained nonlinear systems [J]. Automatica, 2009, 45(4): 918-927. |
[11] | ZHANG S, DONG Y, OUYANG Y, et al. Adaptive neural control for robotic manipulators with output constraints and uncertainties [J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(11): 5554-5564. |
[12] | YU X, LI Y, ZHANG S, et al. Estimation of human impedance and motion intention for constrained human-robot interaction [J]. Neurocomputing, 2020, 390: 268-279. |
[13] | HE W, XUE C, YU X, et al. Admittance-based controller design for physical human-robot interaction in the constrained task space [J]. IEEE Transactions on Automation Science and Engineering, 2020, 17(4):1937-1949. |
[14] | LI J, YOU B, DING L, et al. A novel bilateral haptic teleoperation approach for hexapod robot walking and manipulating with legs [J]. Robotics and Autonomous Systems, 2018, 108: 1-12. |
[15] | CREMER S, DAS S K, WIJAYASINGHE I B, et al. Model-free online neuroadaptive controller with intent estimation for physical human–robot interaction [J]. IEEE Transactions on Robotics, 2020, 36(1): 240-253. |
[16] | WANG Y, LIN Q, ZHOU L, et al. Adaptive radial basis function neural network control of a wire-driven parallel robot based on local model approximation [J]. Control Theory & Applications, 2021, 38(3): 380-390 (in Chinese). |
[17] | YOU B, LI J, DING L, et al. Semi-autonomous bilateral teleoperation of hexapod robot based on haptic force feedback [J]. Journal of Intelligent & Robotic Systems, 2018, 91(3/4): 583-602. |
[18] | LI Y, TEE K P, CHAN W L, et al. Continuous role adaptation for human-robot shared control [J]. IEEE Transactions on Robotics, 2015, 31(3): 672-681. |
[19] | LI Y, GE S S. Human-robot collaboration based on motion intention estimation [J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(3): 1007-1014. |
[20] | YANG C, PENG G, LI Y, et al. Neural networks enhanced adaptive admittance control of optimized robot-environment interaction [J]. IEEE Transactions on Cybernetics, 2019, 49(7): 2568-2579. [21] FURUTA K, KADO Y, SHIRATORI S. Assisting control in human adaptive mechatronics: Single ball juggling [C]//IEEE Conference on Computer Aided Control System Design. Munich, Germany: IEEE, 2006: 545-550. |
[22] | JIANG Y, JIANG Z. Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics [J]. Automatica, 2012, 48(10): 2699-2704. |
[23] | BIAN T, JIANG Z. Value iteration and adaptive dynamic programming for data-driven adaptive optimal control design [J]. Automatica, 2016, 71: 348-360. |
[24] | RIZVI S, LIN Z. Reinforcement learning-based linear quadratic regulation of continuous-time systems using dynamic output feedback [J]. IEEE Transactions on Cybernetics, 2019, 50(11): 4670-4679. [25] ZHEN H, FANG Z. Research on tracking error of robot arm based on adaptive neural network control [J]. Machinery Design & Manufacture, 2019(6): 139-141 (in Chinese). |
[1] | Wang Wei, Zhou Cheng, Jiang Jinlei, Cui Xinyuan, Yan Guozheng, Cui Daxiang. Optimization of Wireless Power Receiving Coil for Near-Infrared Capsule Robot [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 425-432. |
[2] | Li Tao, Zhao Zhigang, Zhu Mingtong, Zhao Xiangtang. Cable Vector Collision Detection Algorithm for Multi-Robot Collaborative Towing System [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 319-329. |
[3] | Fu Yujia, Zhang Jian, Zhou Liping, Liu Yuanzhi, Qin Minghui, Zhao Hui, Tao Wei. Passive Binocular Optical Motion Capture Technology Under Complex Illumination [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 352-362. |
[4] | Nie Wei, Liang Xinwu. Efficient Fully Convolutional Network and Optimization Approach for Robotic Grasping Detection Based on RGB-D Images [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 399-416. |
[5] | ZHAO Yanfei1,2,3(赵艳飞), XIAO Peng4 (肖鹏), WANG Jingchuan1,2,3* (王景川), GUO Rui4*(郭锐). Semi-Autonomous Navigation Based on Local Semantic Map for Mobile Robot [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 27-33. |
[6] | FU Hang1 (傅航),XU Jiangchang1 (许江长), LI Yinwei2,4* (李寅炜),ZHOU Huifang2,4 (周慧芳),CHEN Xiaojun1,3* (陈晓军). Augmented Reality Based Navigation System for Endoscopic Transnasal Optic Canal Decompression [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 34-42. |
[7] | ZHOU Hanwei1 (周涵巍),ZHU Xinping1 (朱心平),MA Youwei2 (马有为),WANG Kundong1* (王坤东). Low Latency Soft Fiberoptic Choledochoscope Robot Control System [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 43-52. |
[8] | HE Guisong (贺贵松), HUANG Xuegong* (黄学功),LI Feng(李峰). Coordination Design of a Power-Assisted Ankle Exoskeleton Robot Based on Active-Passive Combined Drive [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 197-208. |
[9] | LIU Yuesheng (刘月笙), HE Ning∗ (贺宁), HE Lile (贺利乐), ZHANG Yiwen (张译文), XI Kun (习坤), ZHANG Mengrui (张梦芮). Self-Tuning of MPC Controller for Mobile Robot Path Tracking Based on Machine Learning [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1028-1036. |
[10] | DONG Yubo1 (董玉博), CUI Tao1 (崔涛), ZHOU Yufan1 (周禹帆), SONG Xun2 (宋勋), ZHU Yue2 (祝月), DONG Peng1∗ (董鹏). Reward Function Design Method for Long Episode Pursuit Tasks Under Polar Coordinate in Multi-Agent Reinforcement Learning [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 646-655. |
[11] | DU Haikuo1,2 (杜海阔), GUO Zhengyu3,4(郭正玉), ZHANG Lulu1,2(章露露), CAI Yunze1,2∗ (蔡云泽). Multi-Objective Loosely Synchronized Search for Multi-Objective Multi-Agent Path Finding with Asynchronous Actions [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 667-677. |
[12] | DONG Dejin1,2 (董德金), DONG Shiyin3 (董诗音), ZHANG Lulu1,2 (章露露), CAI Yunze1,2∗ (蔡云泽). Multi-AGVs Scheduling with Vehicle Conflict Consideration in Ship Outfitting Items Warehouse [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 725-736. |
[13] | LI Shuyi (李舒逸), LI Minzhe (李旻哲), JING Zhongliang∗ (敬忠良). Multi-Agent Path Planning Method Based on Improved Deep Q-Network in Dynamic Environments [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 601-612. |
[14] | XU Yaru(徐亚茹), LI Kehong(李克鸿), SHANG Xinna(商新娜), JIN Xiaoming(金晓明), LIU Rong(刘荣), ZHANG Jiancheng(张建成). Establishment of Constraint Relation of Robot Dynamics Equation Based on Kinematic Influence Coefficients Method [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 450-456. |
[15] | ZHAO Yingce(赵英策), ZHANG Guanghao(张广浩), XING Zhengyu(邢正宇), LI Jianxun(李建勋). Hierarchical Reinforcement Learning Adversarial Algorithm Against Opponent with Fixed Offensive Strategy [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 471-479. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 229
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 522
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||