J Shanghai Jiaotong Univ Sci ›› 2023, Vol. 28 ›› Issue (1): 70-76.doi: 10.1007/s12204-023-2570-6
Previous Articles Next Articles
MAO Tianyang (茅天阳), ZHAO Wentao (赵文韬), WANG Jingchuan∗ (王景川), CHEN Weidong (陈卫东)
Received:
2021-12-10
Online:
2023-01-28
Published:
2023-02-10
[1] ZHUANG H Y, ZHOU X J, WANG C X, et al. Wavelet transform-based high-definition map construction from a panoramic camera [J]. Journal of Shanghai Jiao Tong University (Science), 2021, 26(5): 569-576. [2] CHEN J C, LI L, YANG X B. Efficient online vehicle tracking for real–virtual mapping systems [J]. Journal of Shanghai Jiao Tong University (Science), 2021, 26(5): 598-606. [3] AN L F, ZHANG X Y, GAO H B, et al. Semantic segmentation–aided visual odometry for urban autonomous driving [J]. International Journal of Advanced Robotic Systems, 2017, 14(5): 1-11. [4] MOURIKIS A I, ROUMELIOTIS S I. A multi-state constraint Kalman filter for vision-aided inertial navigation [C]//2007 IEEE International Conference on Robotics and Automation. Rome: IEEE, 2007: 3565-3572. [5] LI M Y, MOURIKIS A I. High-precision, consistent EKF-based visual-inertial odometry [J]. The International Journal of Robotics Research, 2013, 32(6): 690-711. [6] QIN T, LI P L, SHEN S J. VINS-Mono: A robust and versatile monocular visual-inertial state estimator [J]. IEEE Transactions on Robotics, 2018, 34(4): 1004-1020. [7] ZHANG J, SINGH S. Low-drift and real-time lidar odometry and mapping [J]. Autonomous Robots, 2017, 41(2): 401-416. [8] SHAN T X, ENGLOT B, MEYERS D, et al. LIOSAM: Tightly-coupled lidar inertial odometry via smoothing and mapping [C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, NV: IEEE, 2020: 5135-5142. [9] XU W, ZHANG F. FAST-LIO: A fast, robust LiDAR-inertial odometry package by tightly-coupled iteratedKalman filter [J]. IEEE Robotics and Automation Letters, 2021, 6(2): 3317-3324. [10] PEREIRA M, et al. Self calibration of multiple LIDARs and cameras on autonomous vehicles [J]. Robotics and Autonomous Systems, 2016, 83: 326-337. [11] KIM D H, KIM G W. Efficient calibration method of multiple LiDARs on autonomous vehicle platform [C]//2020 IEEE International Conference on Big Data and Smart Computing. Busan: IEEE, 2020: 446-447. [12] GOGINENI S. Multi-sensor fusion and sensor calibration for autonomous vehicles [J]. International Research Journal of Engineering and Technology, 2020, 7(7): 1073-1078. [13] BELTR′AN J, GUINDEL C, DE LA ESCALERA A, et al. Automatic extrinsic calibration method for LiDAR and camera sensor setups [J]. Transactions on Intelligent Transportation Systems, 2022, 23(10): 1-13. [14] KATO S, TAKEUCHI E, ISHIGURO Y, et al. An open approach to autonomous vehicles [J]. IEEE Micro, 2015, 35(6): 60-68. [15] FURGALE P, BARFOOT T D, SIBLEY G. Continuous-time batch estimation using temporal basis functions [C]//2012 IEEE International Conference on Robotics and Automation. Saint Paul, MN: IEEE, 2012: 2088-2095. [16] LEVINSON J, THRUN S. Automatic online calibration of cameras and lasers [C]//Robotics: Science and Systems IX. Berlin: IEEE, 2013: 24-28. [17] JIAO J H, YE H Y, ZHU Y L, et al. Robust odometry and mapping for multi-LiDAR systems with online extrinsic calibration [J]. IEEE Transactions on Robotics, 2022, 38(1): 351-371. [18] ZUO X X, GENEVA P, LEE W, et al. LIC-fusion: LiDAR-inertial-camera odometry [C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems. Macao: IEEE, 2019: 5848-5854. [19] LIN J R, ZHENG C R, XU W, et al. R2LIVE: A robust, real-time, LiDAR-inertial-visual tightly-coupled state estimator and mapping [J]. IEEE Robotics and Automation Letters, 2021, 6(4): 7469-7476. [20] SHAN T X, ENGLOT B, RATTI C, et al. LVI-SAM: Tightly-coupled lidar-visual-inertial odometry via smoothing and mapping [C]//2021 IEEE International Conference on Robotics and Automation. Xi’an: IEEE, 2021: 5692-5698. [21] LUCAS B D, KANADE T. An iterative image registration technique with an application to stereo vision [C]//7th International Joint Conference on Artificial Intelligence. Vancouver: Morgan Kaufmann Publishers Inc, 1981: 674-679. [22] HUBER P J. Robust estimation of a location parameter [M]//Breakthroughs in statistics. New York: Springer, 1992: 492-518. [23] AGARWAL S, MIERLE K. Ceres solver: Tutorial & reference [EB/OL]. [2021-12-10]. http://www.ceressolver.org. |
[1] | ZHAO Yanfei1,2,3(赵艳飞), XIAO Peng4 (肖鹏), WANG Jingchuan1,2,3* (王景川), GUO Rui4*(郭锐). Semi-Autonomous Navigation Based on Local Semantic Map for Mobile Robot [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 27-33. |
[2] | LI Shuyi (李舒逸), LI Minzhe (李旻哲), JING Zhongliang∗ (敬忠良). Multi-Agent Path Planning Method Based on Improved Deep Q-Network in Dynamic Environments [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 601-612. |
[3] | ZHAO Yingce(赵英策), ZHANG Guanghao(张广浩), XING Zhengyu(邢正宇), LI Jianxun(李建勋). Hierarchical Reinforcement Learning Adversarial Algorithm Against Opponent with Fixed Offensive Strategy [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 471-479. |
[4] | CAO Bingquan1,2,3 (曹炳全), HE Yuesheng1,2,3∗ (贺越生), ZHUANG Hanyang4 (庄瀚洋), YANG Ming1,2,3 (杨 明). Infrastructure-Based Vehicle Localization System for Indoor Parking Lot Using RGB-D Cameras [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 61-69. |
[5] | LÜ Qibing (吕其兵), LIU Tianyuan (刘天元), ZHANG Rong (张荣), JIANG Yanan (江亚南), XIAO Lei (肖雷), BAO Jingsong∗ (鲍劲松). Generation Approach of Human-Robot Cooperative Assembly Strategy Based on Transfer Learning [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 602-613. |
[6] | LIU Dasheng∗ (刘大生), YAN Guozheng (颜国正). Biomechanical Analysis of a Radial Expansion Mechanism of Intestinal Robot Coupling with Hyperelastic Intestinal Wall [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 552-560. |
[7] | LI Yanbiao∗ (李研彪), CHEN Ke (陈 科), SUN Peng (孙 鹏), WANG Zesheng (王泽胜). Dynamic Modeling and Performance Evaluation of a Novel Humanoid Ankle Joint [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 570-578. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||