J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (3): 388-399.doi: 10.1007/s12204-022-2540-4

• • 上一篇    下一篇

基于目标检测和特征提取网络的运动无人机平台下多目标跟踪

刘增敏1,2,3,4,6,王申涛5,姚莉秀1,2,3,蔡云泽1,2,3,4,6   

  1. (1.上海交通大学 自动化系,上海200240;2. 系统控制与信息处理教育部重点实验室,上海200240;3. 上海工业智能管控工程技术研究中心,上海 200240;4. 海洋智能装备与系统教育部重点实验室,上海 200240;5. 京东企业业务增长部,北京100176;6. 上海交通大学 海洋装备研究院,上海 200240)
  • 接受日期:2021-10-10 出版日期:2024-05-28 发布日期:2024-05-28

Online Multi-Object Tracking Under Moving Unmanned Aerial Vehicle Platform Based on Object Detection and Feature Extraction Network

LIU Zengmin1,2,3,4,6 (刘增敏), WANG Shentao5(王申涛),YAO Lixiu1,2,3 (姚莉秀),CAI Yunze1,2,3,4,6∗(蔡云泽)   

  1. (1. Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China; 2. Key Laboratory of System Control and Information Processing of Ministry of Education, Shanghai 200240, China; 3. Shanghai Engineering Research Center of Intelligent Control and Management, Shanghai 200240, China; 4. Key Laboratory of Marine Intelligent Equipment and System of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China; 5. JD Business Growth Department, Beijing 100176, China; 6. Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, China)
  • Accepted:2021-10-10 Online:2024-05-28 Published:2024-05-28

摘要: 为了解决无人机平台下小物体尺寸小、检测精度低的问题,基于深度聚合网络和高分辨率融合模块研究了一种目标检测算法。此外,还探索了一种目标检测与特征提取的联合网络,以构建实时多目标跟踪算法。针对无人机移动导致的目标关联失败问题,将图像配准应用于多目标跟踪,并提出了一种相机运动判别模型,以提高多目标跟踪算法的速度。仿真结果表明,提出的算法能够提高无人机平台下的多目标跟踪精度,并有效解决无人机移动导致的关联失败问题。

关键词: 移动无人机(UAV)平台, 小物体, 特征提取, 图像配准, 多目标跟踪

Abstract: In order to solve the problem of small object size and low detection accuracy under the unmanned aerial vehicle (UAV) platform, the object detection algorithm based on deep aggregation network and high-resolution fusion module is studied. Furthermore, a joint network of object detection and feature extraction is studied to construct a real-time multi-object tracking algorithm. For the problem of object association failure caused by UAV movement, image registration is applied to multi-object tracking and a camera motion discrimination model is proposed to improve the speed of the multi-object tracking algorithm. The simulation results show that the algorithm proposed in this study can improve the accuracy of multi-object tracking under the UAV platform, and effectively solve the problem of association failure caused by UAV movement.

中图分类号: