[1]罗仕鉴, 潘云鹤. 产品设计中的感性意象理论、技术与应用研究进展[J]. 机械工程学报, 2007, 43(3): 8-13.
LUO Shijian, PAN Yunhe. Review of theory, key technologies and its application of perceptual image in product design[J]. Journal of Mechanical Engineering, 2007, 43(3): 8-13.
[2]XIONG Y, LI Y, PAN P, et al. A regression-based Kansei engineering system based on form feature lines for product form design[J]. Advances in Mechanical Engineering, 2016, 8(7): 168781401665610.
[3]LIM S, TUCKER C S. A Bayesian sampling method for product feature extraction from large-scale textual data[J]. Journal of Mechanical Design, 2016, 138(6): 061403.
[4]BORDAGARAY M, DELL’OLIO L, IBEAS A, et al. Modelling user perception of bus transit quality considering user and service heterogeneity[J]. Transportmetrica A: Transport Science, 2014, 10(8): 705-721.
[5]CHEN M C, CHANG K C, HSU C L, et al. Applying a Kansei engineering-based logistics service design approach to developing international express services[J]. International Journal of Physical Distribution & Logistics Management, 2015, 45(6): 618-646.
[6]倪敏娜, 孙志宏, 王梓, 等. 面向产品造型感性意象评价的BP神经网络模型的应用[J]. 东华大学学报, 2016, 42(4): 604-607.
NI Minna, SUN Zhihong, WANG Zi, et al. Applied research on BP neural network of Kansei images and elements modeling for the evaluation of product design[J]. Journal of Donghua University, 2016, 42(4): 604-607.
[7]ZHOU F, JIAO R J, LINSEY J S. Latent customer needs elicitation by use case analogical reasoning from sentiment analysis of online product reviews[J]. Journal of Mechanical Design, 2015, 137(7): 071401.
[8]KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks [J]. Advances in Neural Information Processing Systems, 2012, 25(2): 1097-1105.
[9]HECHT-NIELSEN R. Theory of the backpropagation neural network[C]//International Joint Conference on Neural Networks. IEEE, 2002, 1: 593-605.
[10]YOUNG S R, ROSE D C, KARNOWSKI T P, et al. Optimizing deep learning hyper-parameters through an evolutionary algorithm[C]//Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments. ACM, 2015: 1-5.
[11]BOTTOU L. Stochastic gradient descent tricks[M].Neural Networks: Tricks of the Trade. Springer Berlin Heidelberg, 2012: 421-436.
[12]BOTEV A, LEVER G, BARBER D. Nesterov’s accelerated gradient and momentum as approximations to regularised update descent[C]//International Joint Conference on Neural Networks. IEEE, 2017: 1899-1903.
[13]LE Q V, NGIAM J, COATES A, et al. On optimization methods for deep learning[C]//Proceedings of the 28th International Conference on International Conference on Machine Learning. Omnipress, 2011: 265-272.
[14]HADGU A T, NIGAM A, DIAZ-AVILES E. Large-scale learning with AdaGrad on Spark[C]//IEEE International Conference on Big Data. IEEE, 2015: 2828-2830.
[15]OOI K B, TAN G W H. Mobile technology acceptance model: An investigation using mobile users to explore smartphone credit card[J]. Expert Systems with Applications, 2016, 59: 33-46.
[16]卢淑华. 社会统计学[M]. 第四版.北京大学出版社, 2009.
LU Shuhua. Social statistics[M]. 4th edition. Peking University Press, 2009.
[17]MUKHOPADHYAY S C. Wearable sensors for human activity monitoring: A review[J]. IEEE Sensors Journal, 2015, 15(3): 1321-1330.
[18]杜党党, 贾晓亮, 郝超博. 基于遗传过程神经网络算法的航空发动机健康状态图谱化预测方法[J]. 计算机集成制造系统, 2015, 21(11): 2980-2987.
DU Dangdang, JIA Xiaoliang, HAO Chaobo. Graphics prediction method for health states of aero engines based on GA-PNN[J]. Computer Integrated Manufacturing Systems, 2015, 21(11): 2980-2987. |