J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (3): 400-413.doi: 10.1007/s12204-022-2484-8
陈坤1,2,赵旭1,董春玉1,邸子超1,陈宗枝1
接受日期:
2021-09-11
出版日期:
2024-05-28
发布日期:
2024-05-28
CHEN Kun1,2(陈坤),ZHAO Xu1∗(赵旭),DONG Chunyu1(董春玉), DI Zichao1(邸子超),CHEN Zongzhi1(陈宗枝)
Accepted:
2021-09-11
Online:
2024-05-28
Published:
2024-05-28
摘要: 视觉目标跟踪是计算机视觉中长期受到关注的重要问题。在长期跟踪中,有效处理遮挡,特别是严重遮挡的能力,是评价目标跟踪算法性能的重要方面,对提高目标跟踪算法的鲁棒性具有重要意义。然而,大多数目标跟踪算法缺乏专门处理遮挡的机制。在遮挡情况下,由于缺少目标信息,需要根据运动轨迹预测目标位置。卡尔曼滤波和粒子滤波可以有效地根据历史运动信息预测目标运动状态。一种名为概率判别模型预测(PrDiMP)的单目标跟踪方法,基于复杂场景和遮挡中的空间注意力机制。为了提高PrDiMP的性能,引入了卡尔曼滤波、粒子滤波和线性滤波。首先,针对遮挡情况,分别引入卡尔曼滤波和粒子滤波来预测物体位置,从而替代原始跟踪算法的检测结果,并停止目标模型的递归。其次,针对复杂场景中相似物体的检测跳变问题,增加了一个线性滤波窗口。在GOT-10k、UAV123和LaSOT三个数据集上的评估结果,以及几个视频上的可视化结果表明:我们的算法在遮挡情况下提高了跟踪性能,并有效抑制了检测跳变。
中图分类号:
陈坤1, 2, 赵旭1, 董春玉1, 邸子超1, 陈宗枝1. 基于滤波器预测的抗遮挡目标跟踪算法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 400-413.
CHEN Kun(陈坤), ZHAO Xu(赵旭), DONG Chunyu(董春玉), DI Zichao(邸子超), CHEN Zongzhi(陈宗枝). Anti-Occlusion Object Tracking Algorithm Based on Filter Prediction[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 400-413.
[1] LU H C, LI P X, WANG D. Visual object tracking: A survey [J]. Pattern Recognition and Artificial Intelligence, 2018, 31(1): 61-76 (in Chinese). [2] BABENKO B, YANG M H, BELONGIE S. Robust object tracking with online multiple instance learning [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632. [3] KALAL Z, MIKOLAJCZYK K, MATAS J. Trackinglearning-detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422. [4] AVIDAN S. Support vector tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8): 1064-1072. [5] HARE S, GOLODETZ S, SAFFARI A, et al. Struck: Structured output tracking with kernels [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10): 2096-2109. [6] SAFFARI A, LEISTNER C, SANTNER J, et al. Online random forests [C]//2009 IEEE 12th International Conference on Computer Vision Workshops. Kyoto: IEEE, 2009: 1393-1400. [7] BABENKO B, YANG M H, BELONGIE S. Visual tracking with online multiple instance learning [C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009: 983-990. [8] JIANG N, LIU W Y, WU Y. Learning adaptive metric for robust visual tracking [J]. IEEE Transactions on Image Processing, 2011, 20(8): 2288-2300. [9] BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters [C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA: IEEE, 2010: 2544-2550. [10] BHAT G, DANELLJAN M, VAN GOOL L, et al. Learning discriminative model prediction for tracking [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 6181-6190. [11] DANELLJAN M, VAN GOOL L, TIMOFTE R. Probabilistic regression for visual tracking [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA: IEEE, 2020: 7181-7190. [12] HAN G, DU H, LIU J X, et al. Fully conventional anchor-free Siamese networks for object tracking [J]. IEEE Access, 2019, 7: 123934-123943. [13] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking [M]//Computer vision – ECCV 2016 Workshops. Cham: Springer, 2016: 850-865. [14] LI B, YAN J J, WU W, et al. High performance visual tracking with Siamese region proposal network [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT: IEEE, 2018: 8971-8980. [15] WANG Q, TENG Z, XING J L, et al. Learning attentions: residual attentional Siamese network for high performance online visual tracking [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT: IEEE, 2018: 4854-4863. [16] LI B, WU W, WANG Q, et al. SiamRPN++: Evolution of Siamese visual tracking with very deep networks [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA: IEEE, 2019: 4277-4286. [17] FAN H, LING H B. Siamese cascaded region proposal networks for real-time visual tracking [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA: IEEE, 2019: 7944-7953. [18] GUO D Y, WANG J, CUI Y, et al. SiamCAR: Siamese fully convolutional classification and regression for visual tracking [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA: IEEE, 2020: 6268-6276. [19] XU Y D, WANG Z Y, LI Z X, et al. SiamFC++: towards robust and accurate visual tracking with target estimation guidelines [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12549-12556. [20] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module [M]//Computer vision – ECCV 2018. Cham: Springer, 2018: 3-19. [21] KALMAN R E. A new approach to linear filtering and prediction problems [J]. Journal of Basic Engineering, 1960, 82(1): 35-45. [22] ISARD M, BLAKE A. Condensation: Conditional density propagation for visual tracking [J]. International Journal of Computer Vision, 1998, 29: 5-28. [23] HUANG L H, ZHAO X, HUANG K Q. GOT-10k: A large high-diversity benchmark for generic object tracking in the wild [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1562-1577. [24] MUELLER M, SMITH N, GHANEM B. A benchmark and simulator for UAV tracking [M]//Computer vision — ECCV 2016. Cham: Springer, 2016: 445-461. [25] FAN H, LIN L T, YANG F, et al. LaSOT: A highquality benchmark for large-scale single object tracking [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA: IEEE, 2019: 5369-5378. [26] JIANG B, LUO R, MAO J, et al. Acquisition of localization confidence for accurate object detection [M]//Computer vision — ECCV 2018. Cham: Springer, 2018: 784-799. [27] DANELLJAN M, BHAT G, KHAN F S, et al. ATOM: Accurate tracking by overlap maximization [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA: IEEE, 2019: 4655-4664. [28] WANG Q, GAO J, XING J L, et al. DCFNet: Discriminant correlation filters network for visual tracking [EB/OL]. (2017-04-13). https://arxiv.org/abs/1704.04057. [29] DANELLJAN M, H¨AGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking [C]//2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 4310-4318. [30] DANELLJAN M, H¨AGER G, KHAN F S, et al. Adaptive decontamination of the training set: A unified formulation for discriminative visual tracking [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV: IEEE, 2016: 1430-1438. [31] DANELLJAN M, BHAT G, KHAN F S, et al. ECO: efficient convolution operators for tracking [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI: IEEE, 2017: 6931-6939. [32] WU Y, LIM J, YANG M H. Online object tracking: A benchmark [C]//2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR: IEEE, 2013: 2411-2418. [33] KRISTAN M, LEONARDIS A, MATAS J, et al. The sixth visual object tracking VOT2018 challenge results [M]//Computer vision – ECCV 2018 Workshops. Cham: Springer, 2019: 3-53. [34] CHEN Z. Bayesian filtering: From Kalman filters to particle filters, and beyond [J]. Statistics, 2003, 182(1): 1-69. [35] MARSHALL A W. The use of multi-stage sampling schemes in Monte Carlo computations [R]. New York: Rand Corp Santa Monica Calif, 1954. [36] HANDSCHIN J E, MAYNE D Q. Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering [J]. International Journal of Control, 1969, 9(5): 547-559. [37] KONG A, LIU J S, WONG W H. Sequential imputations and Bayesian missing data problems [J]. Journal of the American Statistical Association, 1994, 89(425): 278-288. [38] KITAGAWA G. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models [J]. Journal of Computational and Graphical Statistics, 1996, 5(1): 1-25. [39] DEL MORAL P, JACOD J, PROTTER P. The Monte-Carlo method for filtering with discrete-time observations [J]. Probability Theory and Related Fields, 2001, 120(3): 346-368. [40] CARPENTER J, CLIFFORD P, FEARNHEAD P. Improved particle filter for nonlinear problems [J]. IEE Proceedings-Radar, Sonar and Navigation, 1999, 146(1): 2. [41] CARPENTER J, CLIFFORD P, FEARNHEAD P. Building robust simulation-based filters for evolving data sets [R]. Oxford: University of Oxford, 1999. [42] KRISTAN M, MATAS J, LEONARDIS A, et al. The seventh visual object tracking VOT2019 challenge results [C]//2019 IEEE/CVF International Conference on Computer Vision Workshop. Seoul: IEEE, 2019: 2206-2241. [43] DANELLJAN M, ROBINSON A, SHAHBAZ KHAN F, et al. Beyond correlation filters: Learning continuous convolution operators for visual tracking [M]//Computer vision — ECCV 2016. Cham: Springer, 2016: 472-488. [44] HELD D, THRUN S, SAVARESE S. Learning to track at 100 FPS with deep regression networks [M]//Computer vision — ECCV 2016. Cham: Springer, 2016: 749-765. [45] VALMADRE J, BERTINETTO L, HENRIQUES J, et al. End-to-end representation learning for correlation filter based tracking [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI: IEEE, 2017: 5000-5008. |
[1] | 杜宁, 吴树范, 陈占胜, 陈文晖, 王世耀, 徐家国, 秦栋栋. 卫星对空中动态目标凝视成像姿态规划方法[J]. 上海交通大学学报, 2024, 58(4): 411-418. |
[2] | 钱镭源, 覃方君, 李开龙, 朱天高. 基于SE(3)的鲁棒自适应算法及其在SINS/DVL中的应用[J]. 上海交通大学学报, 2024, 58(4): 498-510. |
[3] | 孙志伟, 胡雄, 董凯, 孙德建, 刘洋. 基于LSTM-CAPF框架的岸桥起升减速箱轴承寿命预测方法[J]. 上海交通大学学报, 2024, 58(3): 352-360. |
[4] | 王亚锋, 黄沛硕, 喻夏琼, 宋磊, 于文彬. 海上组合导航中北斗定位误差处理方法研究 [J]. 海洋工程装备与技术, 2023, 10(3): 76-82. |
[5] | 黎定佳1,2,3,4, 王重阳1,2,3, 郭伟5, 王志东6, 张忠涛5, 刘浩1,2,3. 基于少量多核光纤光栅传感器的单孔连续体手术机器人形状感知[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 312-322. |
[6] | . 基于多传感器数据融合的室内车辆定位[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 77-85. |
[7] | 姜俊豪, 陈刚. 驾驶机器人转向操纵的动态模型预测控制方法[J]. 上海交通大学学报, 2022, 56(5): 594-603. |
[8] | 赵勇, 苏丹. 基于4种长短时记忆神经网络组合模型的畸形波预报[J]. 上海交通大学学报, 2022, 56(4): 516-522. |
[9] | 黄鹤, 吴琨, 李昕芮, 王珺, 王会峰, 茹锋. 自适应插值飞蛾扑火优化的多特征粒子滤波车辆跟踪算法[J]. 上海交通大学学报, 2022, 56(2): 143-155. |
[10] | 张文佳, 马辛. 深空探测器接近段自主导航的滑动窗口自适应滤波方法[J]. 上海交通大学学报, 2022, 56(11): 1461-1469. |
[11] | 高红莲, 尤杰, 曹松银. 基于PF-UKF组合滤波的SINS/GPS组合导航系统空中对准方法[J]. 上海交通大学学报, 2022, 56(11): 1447-1452. |
[12] | 侯煜冠, 韩远鹏, 谢金月, 毛兴鹏. 基于SDE模型的雷达组目标角度跟踪方法[J]. 空天防御, 2021, 4(1): 41-46. |
[13] | 董祥祥, 吕润妍, 蔡云泽. 基于变分贝叶斯理论的不确定厚尾噪声滤波方法[J]. 上海交通大学学报, 2020, 54(9): 881-889. |
[14] | 崔乃刚, 蔡李根, 荣思远. 基于有向图切换IMM-CKF高速滑翔目标跟踪算法[J]. 空天防御, 2020, 3(3): 1-8. |
[15] | 张记华, 韦亚利, 李智, 周小川. 弹载单基测角被动定位滤波算法研究[J]. 空天防御, 2020, 3(1): 34-40. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||