J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (3): 414-427.doi: 10.1007/s12204-023-2616-9
张彦军1,4,5,6,7, 王碧云2,3 , 蔡云泽1,4,5,6,7
接受日期:
2022-04-23
出版日期:
2024-05-28
发布日期:
2024-05-28
ZHANG Yanjun1,4,5,6,7 (张彦军), WANG Biyun2,3 (王碧云),CAI Yunze1,4,5,6,7∗ (蔡云泽)
Accepted:
2022-04-23
Online:
2024-05-28
Published:
2024-05-28
摘要: 红外探测技术具有全天候检测、隐蔽性好的优点,被广泛应用在远距离目标探测与跟踪系统中,而复杂的背景、强烈的噪音以及目标尺寸小、强度弱的特性给红外弱小目标检测任务带来了很大的困难。针对传统算法漏检率与虚警率高以及深度学习算法模型大、复杂度高、检测性能有待改善的问题,我们提出了基于注意力的多通道网络检测算法。首先,考虑到多尺度红外弱小目标的特征提取困难,我们设计了基于膨胀卷积的多通道网络来捕获多尺度的目标特征。其次,通过在各通道中嵌入坐标注意力模块自适应地抑制背景杂波并增强目标特征。此外,通过上下文注意力结构实现浅层细节特征和深层抽象语义特征的融合。最后,基于SIRST和MDFA数据集与各先进检测算法进行对比,验证了本文提出的算法能够进一步改善检测性能,同时模型的参数量和计算复杂度更小。
中图分类号:
张彦军1,4,5,6,7, 王碧云2,3 , 蔡云泽1,4,5,6,7. 基于注意力的多通道网络红外弱小目标检测[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 414-427.
ZHANG Yanjun(张彦军), WANG Biyun(王碧云),CAI Yunze (蔡云泽). Multi-Channel Based on Attention Network for Infrared Small Target Detection[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 414-427.
[1] CHEN M S, SUN W X, LI M Y, et al. Infrared small target detection under various complex backgrounds [J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(6): 2288-2294 (in Chinese). [2] ZHANG Y, JIA Z Y, ZHOU G R, et al. Infrared dimtarget detection based on multi-directional mixed template [J]. Air & Space Defense, 2019, 2(1): 64-69 (in Chinese). [3] YANG J, YANG J, WANG F L. An improved algorithm for multiple infrared targets tracking [J]. Journal of Shanghai Jiao Tong University, 2009, 43(3): 437-442 (in Chinese). [4] YANG Q L, ZHOU B H, ZHENG W, et al. Small infrared target detection based on fully convolutional network [J]. Infrared Technology, 2021, 43(4): 349-356(in Chinese). [5] LIU J M, MENG W H. Infrared small target detection based on fully convolutional neural network and visual saliency [J]. Acta Photonica Sinica, 2020, 49(7): 46-56(in Chinese). [6] DESHPANDE S D, ER M H, VENKATESWARLU R, et al. Max-mean and max-Median filters for detection of small targets [C]//SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation. Denver: SPIE, 1999: 74-83. [7] BAI X Z, ZHOU F G. Analysis of new top-hat transformation and the application for infrared dim small target detection [J]. Pattern Recognition, 2010, 43(6): 2145-2156. [8] WANG B, DONG L L, ZHAO M, et al. Texture orientation-based algorithm for detecting infrared maritime targets [J]. Applied Optics, 2015, 54(15): 4689-4697. [9] CHEN C L, LI H, WEI Y T, et al. A local contrast method for small infrared target detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 574-581. [10] HAN J H, MA Y, ZHOU B, et al. A robust infrared small target detection algorithm based on human visual system [J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12): 2168-2172. [11] XIA C Q, LI X R, ZHAO L Y, et al. Infrared small target detection based on multiscale local contrast measure using local energy factor [J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(1): 157-161. [12] CHEN Y H, ZHANG G P, MA Y J, et al. Small infrared target detection based on fast adaptive masking and scaling with iterative segmentation [J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5. [13] WEI Y T, YOU X G, LI H. Multiscale patch-based contrast measure for small infrared target detection [J]. Pattern Recognition, 2016, 58: 216-226. [14] NIE J Y, QU S C, WEI Y T, et al. An infrared small target detection method based on multiscale local homogeneity measure [J]. Infrared Physics & Technology, 2018, 90: 186-194. [15] HAN J H, LIANG K, ZHOU B, et al. Infrared small target detection utilizing the multiscale relative local contrast measure [J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 612-616. [16] LIU J, HE Z Q, CHEN Z L, et al. Tiny and dim infrared target detection based on weighted local contrast [J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(11): 1780-1784. [17] HAN J H, MORADI S, FARAMARZI I, et al. A local contrast method for infrared small-target detection utilizing a tri-layer window [J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(10): 1822-1826. [18] GAO C Q, MENG D Y, YANG Y, et al. Infrared patchimage model for small target detection in a single image [J]. IEEE Transactions on Image Processing, 2013, 22(12): 4996-5009. [19] ZHANG T F, WU H, LIU Y H, et al. Infrared small target detection based on non-convex optimization with lp-norm constraint [J]. Remote Sensing, 2019, 11(5): 559. [20] YANG P, DONG L L, XU W H. Infrared small maritime target detection based on integrated target saliency measure [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2369-2386. [21] DAI Y M, WU Y Q, ZHOU F, et al. Asymmetric contextual modulation for infrared small target detection [C]//2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021: 949-958. [22] DAI Y M, WU Y Q, ZHOU F, et al. Attentional local contrast networks for infrared small target detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9813-9824. [23] LI B Y, XIAO C, WANG L G, et al. Dense nested attention network for infrared small target detection [J]. IEEE Transactions on Image Processing, 2022. https://doi.org/10.1109/TIP.2022.3199107. [24] SHI M S, WANG H. Infrared dim and small target detection based on denoising autoencoder network [J]. Mobile Networks and Applications, 2020, 25(4): 1469-1483. [25] DU J M, LU H Z, HU M F, et al. CNN-based infrared dim small target detection algorithm using targetoriented shallow-deep features and effective small anchor [J]. IET Image Processing, 2021, 15(1): 1-15. [26] ZHAO B, WANG C P, FU Q, et al. A novel pattern for infrared small target detection with generative adversarial network [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(5): 4481-4492. [27] ZHANG Y, LIU S J, LI C L, et al. Application of deep learning method on ischemic stroke lesion segmentation [J]. Journal of Shanghai Jiao Tong University (Science), 2022, 27(1): 99-111. [28] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. [29] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation [DB/OL]. (2017-06-17). https://arxiv.org/abs/1706.05587 [30] XU J C, HE S M, YU D D, et al. Automatic segmentation method for cone-beam computed tomography image of the bone graft region within maxillary sinus based on the atrous spatial pyramid convolution network [J]. Journal of Shanghai Jiao Tong University (Science), 2021, 26(3): 298-305. [31] GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: A survey [J]. Computational Visual Media, 2022, 8: 331-368. [32] HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141. [33] GAO Z L, XIE J T, WANG Q L, et al. Global second-order pooling convolutional networks [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3019-3028. [34] WANG Q L, WU B G, ZHU P F, et al. ECA-net: Efficient channel attention for deep convolutional neural networks [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539. [35] LEE H, KIM H E, NAM H. SRM: A style-based recalibration module for convolutional neural networks [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 1854-1862. [36] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks [C]//29th International Conference on Neural Information Processing Systems. Montr′eal: NIPS, 2015: 1-9. [37] HU J, SHEN L, ALBANIE S, et al. Gather-excite: Exploiting feature context in convolutional neural networks [C]//32nd Conference on Neural Information Processing Systems. Montr′eal: NIPS, 2018: 1-11. [38] WANG X L, GIRSHICK R, GUPTA A, et al. Nonlocal neural networks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7794-7803. [39] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13708-13717. [40] WANG H, ZHOU L P, WANG L. Miss detection vs. false alarm: Adversarial learning for small object segmentation in infrared images [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 8508-8517. [41] ZHANG H, ZHANG L, YUAN D, et al. Infrared small target detection based on local intensity and gradient properties [J]. Infrared Physics & Technology, 2018, 89: 88-96. [42] AGHAZIYARATI S, MORADI S, TALEBI H. Small infrared target detection using absolute average difference weighted by cumulative directional derivatives [J]. Infrared Physics & Technology, 2019, 101: 78-87. [43] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [M]//European conference on computer vision. Cham: Springer, 2018: 3-19. [44] MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend: Convolutional triplet attention module [C]//2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021: 3138-3147. |
[1] | . 基于两阶段卷积神经网络的焊缝缺陷监测[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 291-299. |
[2] | 柯晶1, 朱俊超2, 杨鑫1, 张浩林3, 孙宇翔1, 王嘉怡1, 鲁亦舟4, 沈逸卿5, 刘晟6, 蒋伏松7, 黄琴8. TshFNA-Examiner:甲状腺细胞学图像的核分割和癌症评估框架[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 945-957. |
[3] | 李明爱1, 2, 魏丽娜1. 基于朴素卷积神经网络和线性插值的运动想像分类[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 958-966. |
[4] | 耿宗盛1,赵东东1, 2,周兴文1,闫磊1, 阎石1, 2. 基于全分布式事件驱动控制的多智能体系统领导-跟随一致性研究[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 640-645. |
[5] | 刘增敏1, 2, 3, 4, 6, 王申涛5, 姚莉秀1, 2, 3, 蔡云泽1, 2, 3, 4, 6. 基于目标检测和特征提取网络的运动无人机平台下多目标跟踪[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 388-399. |
[6] | 王玉娟1,李文刚2,刘建勇3,陈广学4,汪军1. fiber;麻灰色原配色丝织物的颜色预测模型[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 802-808. |
[7] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 715-722. |
[8] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 737-746. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||