J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (5): 880-888.doi: 10.1007/s12204-023-2682-z
收稿日期:
2023-06-29
接受日期:
2023-07-20
出版日期:
2025-09-26
发布日期:
2023-12-21
董兆贤,于硕,申彦明
Received:
2023-06-29
Accepted:
2023-07-20
Online:
2025-09-26
Published:
2023-12-21
摘要: 本文关注交通流量预测问题,旨在基于历史交通数据预测未来的交通状况。通常情况下,通过利用时空图神经网络建模交通数据之间复杂的时空相关性来解决这一问题。尽管这些方法在性能上有所提升,但往往存在以下限制:这些方法难以建模节点之间的高阶相关性;这些方法忽视了不同尺度下节点之间的相互作用。为了解决这些问题,本文提出了面向交通流量预测的多尺度动态超图卷积网络(MSDHGCN)。提出的MSDHGCN能够有效地建模多个时间尺度上节点之间的动态高阶关系,从而增强交通预测的能力。在两个真实数据集上的实验证明了所提出方法的有效性。
中图分类号:
. 面向交通流量预测的多尺度动态超图卷积网络[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 880-888.
DONG Zhaoxian, YU Shuo, SHEN Yanming. Multi-Scale Dynamic Hypergraph Convolutional Network for Traffic Flow Forecasting[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 880-888.
[1] ZHANG J P, WANG F
Y, WANG K F, et al. Data-driven intelligent transportation systems: A survey
[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1624-1639.
[2] XIA Y, SHI Z Q. Multi-head attention
spatio-temporal convolutional graph network for traffic flow prediction[J]. Application
Research of Computers, 2023, 40(3): 776-770 (in Chinese).
[3] REN
J H, ZHU Y, MENG X F, et al. Prediction of urban traffic flow using dynamic spatio-temporal
neural network [J]. Journal of Chinese Computer Systems, 2023, 44(3): 529-535
(in Chinese).
[4] LI
L, HU Z Y, YANG X B. Intelligent analysis of abnormal vehicle behavior based on
a digital twin [J]. Journal of Shanghai Jiao Tong University (Science), 2021, 26(5):
587-597.
[5] KIPF
T N, WELLING M. Semi-supervised classification with graph convolutional
networks [DB/OL]. (2016-09-09). https://arxiv.org/abs/1609.02907
[6] LI
Y G, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network:
Data-driven traffic forecasting [DB/OL]. (2017-07-06). https://arxiv.org/abs/1707.01926
[7] WU
Z H, PAN S R, LONG G D, et al. Graph wavenet for deep spatial-temporal graph
modeling [C]// 28th International Joint Conference on Artificial Intelligence. Macao:
ACM, 2019: 1907-1913.
[8] DRUCKER
H, BURGES C J, KAUFMAN L, et al. Duality, geometry, and support vector
regression [M]//Advances in neural information processing systems 14. Cambridge:
The MIT
Press, 2002
[9] MAKRIDAKIS
S, HIBON M. ARMA models and the box-jenkins methodology [J]. Journal of Forecasting,
1997, 16(3): 147-163.
[10]
YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting [C]// Twenty-Seventh
International Joint Conference on Artificial Intelligence. Stockholm: IJCAI,
2018: 3634-3640.
[11]
BAI L, YAO L N, LI C, et al. Adaptive graph convolutional recurrent network for
traffic forecasting [C]// 34th International Conference on Neural Information Processing
Systems. Vancouver: NIPS, 2020: 17804-17815.
[12]
SONG C, LIN Y F, GUO S N, et al. Spatial-temporal synchronous graph
convolutional networks: A new framework for spatial-temporal network data
forecasting [J]. Proceedings of the AAAI Conference on Artificial Intelligence,
2020, 34(1): 914-921.
[13]
GUO S N, LIN Y F, FENG N, et al. Attention based spatial-temporal graph
convolutional networks for traffic flow forecasting [J]. Proceedings of the
AAAI Conference on Artificial Intelligence, 2019, 33(1): 922-929.
[14]
FANG Z, LONG Q Q, SONG G J, et al. Spatial-temporal graph ODE networks for
traffic flow forecasting [C]// 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. Singapore. New York: ACM, 2021: 364-373.
[15]
WANG Y, ZHU D. SHGCN: A hypergraph-based deep learning model for spatiotemporal
traffic flow prediction [C]// 5th ACM SIGSPATIAL International Workshop on AI
for Geographic Knowledge Discovery. Seattle: ACM, 2022: 30-39.
[16]
LI M Z, ZHU Z X. Spatial-temporal fusion graph neural networks for traffic flow
forecasting [J]. Proceedings of the AAAI Conference on Artificial Intelligence,
2021, 35(5): 4189-4196.
[17] LAN S, MA Y, HUANG W, et al. DSTAGNN: Dynamic
spatial-temporal aware graph neural network for traffic flow forecasting[C]// 39th
International Conference on Machine Learning. San Diego: IMLS, 2022: 11906-11917.
[18]
WANG J C, ZHANG Y, WEI Y, et al. Metro passenger flow prediction via dynamic
hypergraph convolution networks [J]. IEEE Transactions on Intelligent
Transportation Systems, 2021, 22(12): 7891-7903.
[19]
FENG Y F, YOU H X, ZHANG Z Z, et al. Hypergraph neural networks [J]. Proceedings
of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 3558-3565.
[20]
JIANG J W, WEI Y X, FENG Y F, et al. Dynamic hypergraph neural networks [C]//
Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao:
IJCAI, 2019: 2635-2641.
[21]
DING K Z, WANG J L, LI J D, et al. Be more with less: Hypergraph attention networks
for inductive text classification [C]// 2020 Conference on Empirical Methods in
Natural Language Processing. Stroudsburg: ACL, 2020: 4927-4936.
[22]
YADATI N, NIMISHAKAVI M, YADAV P, et al. HyperGCN: A new method of training
graph convolutional networks on hypergraphs [DB/OL]. (2018-09-07). https://arxiv.org/abs/1809.02589
[23]
YIN N, FENG F L, LUO Z G, et al. Dynamic hypergraph convolutional network [C]//2022
IEEE 38th International Conference on Data Engineering. Kuala Lumpur: IEEE,
2022: 1621-1634.
[24] Wang H, Peng J, Huang F, et al. MICN: Multi-scale
local global context modeling for long-term series forecasting[C]// The
Eleventh International Conference on Learning Representations. Kigali: ICLR, 2022.
[25] Yin H, Zhang F, Li T R. Short-time traffic flow
forecasting based on multi-adjacent graph and multi-head attention
mechanism[J]. Computer Science, 2023, 50(4): 40-46 (in Chinese).
|
[1] | . 基于语义动态超图卷积的三维手姿态估计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(5): 855-865. |
[2] | 范宏, 邢梦晴, 王兰坤, 田书欣. 考虑氢储的风光氢综合能源系统多时间尺度随机生产模拟[J]. 上海交通大学学报, 2024, 58(6): 881-892. |
[3] | LONARE Savita1,2, BHRAMARAMBA Ravi2. 基于图卷积网络的联邦式隐私保护交通预测方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 509-517. |
[4] | 顾慧杰, 周华锋, 彭超逸, 胡亚平, 赵心怡, 谢俊, 施雄华. 含抽水蓄能电站的高比例新能源发电系统多时间尺度调度模型[J]. 上海交通大学学报, 2024, 58(12): 1957-1967. |
[5] | 邵萍, 杨之乐, 李慷, 朱晓东. 基于用户意愿的电动汽车备用容量多目标优化[J]. 上海交通大学学报, 2023, 57(11): 1501-1511. |
[6] | 薛晗,邵哲平,潘家财,张锋. 基于文化萤火虫算法-广义回归神经网络的船舶交通流量预测[J]. 上海交通大学学报, 2020, 54(4): 421-429. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||