J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (5): 880-888.doi: 10.1007/s12204-023-2682-z

• • 上一篇    下一篇

面向交通流量预测的多尺度动态超图卷积网络

  

  1. 大连理工大学 计算机科学与技术学院,辽宁 大连 116024
  • 收稿日期:2023-06-29 接受日期:2023-07-20 出版日期:2025-09-26 发布日期:2023-12-21

Multi-Scale Dynamic Hypergraph Convolutional Network for Traffic Flow Forecasting

董兆贤,于硕,申彦明   

  1. School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, Liaoning, China
  • Received:2023-06-29 Accepted:2023-07-20 Online:2025-09-26 Published:2023-12-21

摘要: 本文关注交通流量预测问题,旨在基于历史交通数据预测未来的交通状况。通常情况下,通过利用时空图神经网络建模交通数据之间复杂的时空相关性来解决这一问题。尽管这些方法在性能上有所提升,但往往存在以下限制:这些方法难以建模节点之间的高阶相关性;这些方法忽视了不同尺度下节点之间的相互作用。为了解决这些问题,本文提出了面向交通流量预测的多尺度动态超图卷积网络(MSDHGCN)。提出的MSDHGCN能够有效地建模多个时间尺度上节点之间的动态高阶关系,从而增强交通预测的能力。在两个真实数据集上的实验证明了所提出方法的有效性。

关键词: 交通流量预测, 动态超图, 超图结构学习, 多时间尺度

Abstract: This paper focuses on the problem of traffic flow forecasting, with the aim of forecasting future traffic conditions based on historical traffic data. This problem is typically tackled by utilizing spatio-temporal graph neural networks to model the intricate spatio-temporal correlations among traffic data. Although these methods have achieved performance improvements, they often suffer from the following limitations: These methods face challenges in modeling high-order correlations between nodes. These methods overlook the interactions between nodes at different scales. To tackle these issues, in this paper, we propose a novel model named multi-scale dynamic hypergraph convolutional network (MSDHGCN) for traffic flow forecasting. Our MSDHGCN can effectively model the dynamic higher-order relationships between nodes at multiple time scales, thereby enhancing the capability for traffic forecasting. Experiments on two real-world datasets demonstrate the effectiveness of the proposed method.

中图分类号: