[1]WANG C B, ZHANG X Y, CHEN X, et al. Vessel traffic flow forecasting based on BP neural network and residual analysis[C]//2017 4th International Conference on Information, Cybernetics and Computational Social Systems (ICCSS). Dalian, China: IEEE, 2017: 350-354.
[2]崔翔鹏, 黄洪琼. 基于GA优化ELM的船舶交通流预测模型[J]. 微型机与应用, 2017, 36 (9): 15-17.
CUI Xiangpeng, HUANG Hongqiong. Ship traffic flow prediction model based on GA-ELM algorithm[J]. Microcomputer and Its Applications, 2017, 36(9): 15-17.
[3]王林生, 蔡丽霞. 模糊控制在船舶交通流量预测中的应用研究[J]. 舰船科学技术, 2016, 38(8): 97-99.
WANG Linsheng, CAI Lixia.Application of fuzzy control in ship traffic flow prediction[J]. Ship Science and Technology, 2016, 38(8): 97-99.
[4]LI X, XIAO J, LIU M. Vessel traffic flow prediction based on the SARIMA model[J]. Journal of Wuhan University of Technology, 2017, 41 (2): 329-332.
[5]LIU R W, CHEN J W, LIU Z, et al. Vessel traffic flow separation-prediction using low-rank and sparse decomposition[C]//2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). Yokohama, Japan: IEEE, 2017: 1-6.
[6]WANG H Y, WANG Y Z. Vessel traffic flow forecasting with the combined model based on support vector machine[C]//2015 International Conference on Transportation Information and Safety. Wuhan, China: IEEE, 2015: 695-698.
[7]CHEN J B, TIAN Y H, YING S J. Optimized LS-SVR method applied to vessel traffic flow prediction[C]//2010 Second International Conference on Computational Intelligence and Natural Computing (CINC). Wuhan, China: IEEE, 2010: 315-320.
[8]ZHANG H, XIAO Y J, BAI X G, et al. GA-support vector regression based ship traffic flow prediction[J]. International Journal of Control and Automation, 2016, 9(2): 219-228.
[9]张树奎, 肖英杰. 船舶交通流量预测的灰色神经网络模型[J]. 上海海事大学学报, 2015, 36(1): 46-49.
ZHANG Shukui, XIAO Yingjie. Grey neural network model for ship traffic flow prediction[J]. Journal of Shanghai Maritime University, 2015, 36(1): 46-49.
[10]李俊, 徐志京, 唐贝贝. 基于GA优化的灰色神经网络船舶交通流量预测方法研究[J]. 船海工程, 2013, 42(5): 135-137.
LI Jun, XU Zhijing, TANG Beibei. Prediction method of ship flow based on grey-neural network improved by GA[J]. Ship and Ocean Engineering, 2013, 42(5): 135-137.
[11]钮浩东, 黄洪琼. 基于FOA优化GRNN的船舶交通流预测模型[J]. 微型机与应用, 2016, 35(12): 81-83.
NIU Haodong, HUANG Hongqiong. Ship traffic flow prediction model based on FOA-GRNN algorithm[J]. Microcomputer and Its Applications, 2016, 35(12): 81-83.
[12]ALI M Z, AWAD N H. A novel class of niche hybrid cultural algorithms for continuous engineering optimization[J]. Information Sciences, 2014, 267(2): 158-190.
[13]YANG X S. Firefly algorithm, stochastic test functions and design optimization[J]. International Journal of Bio-Inspired Computation, 2010, 2(2): 78-84.
[14]SUNDARI M G, RAJARAM M, BALARAMAN S. Application of improved firefly algorithm for programmed PWM in multilevel inverter with adjustable DC sources[J]. Applied Soft Computing, 2016, 41(4): 169-179.
[15]LIANG R H, WANG J C, CHEN Y T, et al. An enhanced firefly algorithm to multi-objective optimal active/reactive power dispatch with uncertainties consideration[J]. International Journal of Electrical Power and Energy Systems, 2015, 64(1): 1088-1097.
[16]ADIL B, FEHMI B O. Adaptive firefly algorithm with chaos for mechanical design optimization problems[J]. Applied Soft Computing, 2015, 36(C): 152-164.
[17]RIZK-ALLAH R M, ZAKI E M, EL-SAWY A A. Hybridizing ant colony optimization with firefly algorithm for unconstrained optimization problems[J]. Applied Mathematics and Computation, 2013, 224(1): 473-483.
[18]RAHMANI A, MIRHASSANI S A. A hybrid firefly-genetic algorithm for the capacitated facility location problem[J]. Information Sciences, 2014, 283(4): 70-78.
[19]KORA P, KRISHNA K S R. Hybrid firefly and particle swarm optimization algorithm for the detection of bundle branch block[J]. International Journal of the Cardiovascular Academy, 2016, 2(1): 44-48.
[20]李兴锋. 基于S-57国际标准的电子海图显示与导航系统[D]. 西安: 西安电子科技大学, 2007.
LI Xingfeng. Electronic chart display and navigation system based on S-57 international standard[D]. Xi′an: Xidian University, 2007.
[21]SPECHT D F. A general regression neural network[J]. IEEE Transactions On Neural Networks, 1991, 2(6): 568-576.
[22]SOLIS F J, WETS R J. Minimization by random search techniques[J]. Mathematics of Operations Research, 1981, 6(1): 19-30. |