J Shanghai Jiaotong Univ Sci ›› 2022, Vol. 27 ›› Issue (5): 715-722.doi: 10.1007/s12204-022-2435-4
收稿日期:
2020-12-18
出版日期:
2022-09-28
发布日期:
2022-09-03
LIU Zhuoran (刘卓然), ZHAO Xu∗ (赵旭)
Received:
2020-12-18
Online:
2022-09-28
Published:
2022-09-03
中图分类号:
. [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 715-722.
LIU Zhuoran (刘卓然), ZHAO Xu∗ (赵旭). Multilevel Disparity Reconstruction Network for Real-Time Stereo Matching[J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 715-722.
[1] | SCHARSTEIN D, SZELISKI R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms [J]. International Journal of Computer Vision, 2002, 47(1/2/3): 7-42. |
[2] | MENZE M, GEIGER A. Object scene flow for autonomous vehicles [C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE 2015: 3061-3070. |
[3] | SCHMID K, TOMIC T, RUESS F, et al. Stereo vision based indoor/outdoor navigation for flying robots [C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo: IEEE, 2013: 3955-3962. |
[4] | ZHANG L, SEITZ S M. Estimating optimal parameters for MRF stereo from a single image pair [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2): 331-342. |
[5] | SUN J, ZHENG N N, SHUM H Y. Stereo matching using belief propagation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(7): 787-800. |
[6] | KOLMOGOROV V, ZABIH R. Computing visual correspondence with occlusions using graph cuts [C]//Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001. Vancouver: IEEE, 2001, 2: 508-515. |
[7] | YOON K J, KWEON I S. Adaptive support-weight approach for correspondence search [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 650-656. |
[8] | HOSNI A, RHEMANN C, BLEYER M, et al. Fast cost-volume filtering for visual correspondence and beyond [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(2): 504-511. |
[9] | MIN D, LU J, DO M N. A revisit to cost aggregation in stereo matching: How far can we reduce its computational redundancy? [C]//2011 International Conference on Computer Vision. Barcelona: IEEE, 2011: 1567-1574. |
[10] | MAYER N, ILG E, H¨AUSSER P, et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 4040-4048. |
[11] | KENDALL A, MARTIROSYAN H, DASGUPTA S, et al. End-to-end learning of geometry and context for deep stereo regression [C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 66-75. |
[12] | CHANG J R, CHEN Y S. Pyramid stereo matching network [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 5410-5418. |
[13] | ZHANG F, PRISACARIU V, YANG R, et al. Ga-net: Guided aggregation net for end-to-end stereo matching [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 185-194. |
[14] | GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite [C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE, 2012: 3354-3361. |
[15] | XU H, ZHANG J. AANet: Adaptive aggregation network for efficient stereo matching [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1956-1965. |
[16] | ˇZBONTAR J, LECUN Y. Computing the stereo matching cost with a convolutional neural network [C]//2015 Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 1592-1599. [17] LUOW, SCHWING A G, URTASUN R. Efficient deep learning for stereo matching [C]//2016 Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 5695-5703. |
[18] | CHEN Z, SUN X, WANG L, et al. A deep visual correspondence embedding model for stereo matching costs [C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 972-980. |
[19] | GIDARIS S, KOMODAKIS N. Detect, replace, refine: Deep structured prediction for pixel wise labeling [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 7187- 7196. |
[20] | SHAKED A,WOLF L. Improved stereo matching with constant highway networks and reflective confidence learning [C]//2017 Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6901- 6910. |
[21] | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431-3440. |
[22] | RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation [M]//Medical image computing and computerassisted intervention -MICCAI 2015. Cham: Springer, 2015: 234-241. |
[23] | LIU W, RABINOVICH A, BERG A C. Parsenet: Looking wider to see better [EB/OL]. (2015-06-15). https://arxiv.org/abs/1506.04579. |
[24] | ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6230-6239. |
[25] | RANJAN A, BLACK M J. Optical flow estimation using a spatial pyramid network [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2720-2729. |
[26] | SUN D, YANG X, LIU M Y, et al. PWC-net: CNNs for optical flow using pyramid, warping, and cost volume [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8934-8943. |
[27] | TANKOVICH V, H¨ANE C, ZHANG Y, et al. HITNet: Hierarchical iterative tile refinement network for real-time stereo matching [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 14357-14367. |
[28] | SCHARSTEIN D, HIRSCHM¨ULLER H, KITAJIMA Y, et al. High-resolution stereo datasets with subpixelaccurate ground truth [M]//Pattern recognition. Cham: Springer, 2014: 31-42. |
[29] | SCH¨OPS T, SCH¨ONBERGER J L, GALLIANI S, et al. A multi-view stereo benchmark with highresolution images and multi-camera videos [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2538-2547. |
[30] | YANG G, MANELA J, HAPPOLD M, et al. Hierarchical deep stereo matching on high-resolution images [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5510-5519. |
[31] | YANG G, SONG X, HUANG C, et al. Driving- Stereo: A large-scale dataset for stereo matching in autonomous driving scenarios [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 899-908. |
[32] | KHAMIS S, FANELLO S, RHEMANN C, et al. StereoNet: Guided hierarchical refinement for real-time edge-aware depth prediction [M]//Computer vision - ECCV 2018. Cham: Springer, 2018: 596-613. |
[33] | TONIONI A, TOSI F, POGGI M, et al. Real-time self-adaptive deep stereo [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 195-204. |
[34] | YIN Z, DARRELL T, YU F. Hierarchical discrete distribution decomposition for match density estimation [C]// 2019 IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 6037- 6046. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||