J Shanghai Jiaotong Univ Sci ›› 2023, Vol. 28 ›› Issue (1): 77-85.doi: 10.1007/s12204-023-2571-5
收稿日期:
2021-12-13
出版日期:
2023-01-28
发布日期:
2023-02-10
WANG Mingyang (王明阳), SHI Liangren∗ (时良仁), LI Yuanlong (李元龙)
Received:
2021-12-13
Online:
2023-01-28
Published:
2023-02-10
摘要: 在车辆前轮转角和后轮线速度未知的前提下,本文提出了一种基于卡尔曼滤波的室内车辆定位方法。本文使用超宽带传感器获取室内车辆的位置和速度,用惯性测量单元获取车辆的加速度和朝向角。为融合这些信息提高实时定位性能,本文分别基于线性卡尔曼滤波和扩展卡尔曼滤波提出了两种算法。然后本文编写对应算法,通过仿真和实验验证方法的可行性并测试性能。在实验中,整定卡尔曼滤波的超参数后,运行两种算法并和LiDAR提供的真值做比对,计算各自的正确率和准确率。结果表明,在室内车辆低速运动时,本文的方法与传感器直接提供的定位数据相比可以有效提高正确率和准确率,取得理想的定位效果。
中图分类号:
. 基于多传感器数据融合的室内车辆定位[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 77-85.
WANG Mingyang (王明阳), SHI Liangren∗ (时良仁), LI Yuanlong (李元龙). Indoor Vehicle Positioning Based on Multi-Sensor Data Fusion[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 77-85.
[1] KEUNECKE K, SCHOLL G. Accurate indoor localization by combining IEEE 802.11 g/n/ac WiFi-systems with strapdown inertial measurement units [C]//German Microwave Conference. Aachen: VDE, 2014: 1-4. [2] DINH-VAN N, NASHASHIBI F, THANH-HUONG N, et al. Indoor Intelligent Vehicle localization using WiFi received signal strength indicator [C]//2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility. Nagoya: IEEE, 2017: 33-36. [3] LUO J P, CHEN M Y, LI J P, et al. An indoor autonomous guided vehicle based on electromagnetic tracking and positioning ibeacon [C]//2018 Chinese Control and Decision Conference. Shenyang: IEEE, 2018: 6759-6764. [4] WANG Y, LIN J. Indoor location technique based on RFID [J]. China Instrumentation, 2011(2): 54-57 (in Chinese). [5] HARTMANN F, RIFAT D, STORK W. Hybrid indoor pedestrian navigation combining an INS and a spatial non-uniform UWB-network [C]//2016 19th International Conference on Information Fusion. Heidelberg: IEEE, 2016: 549-556. [6] ZHAO D K. Localization and navigation in complicated environments using UWB and IMU [D]. Harbin: Harbin Institute of Technology, 2016 (in Chinese). [7] CHEN Z F, CAI Y Z. Data fusion algorithm for multisensor dynamic system based on interacting multiplemodel [J]. Journal of Shanghai Jiao Tong University (Science), 2015, 20(3): 265-272. [8] ZHANG K Z, TIAN W F, DANG S W, et al. Simple adaptive filtering scheme to improve measurement accuracy of gyroscope on angular motion base [J]. Journal of Shanghai Jiao Tong University (Science), 2009, 14(6): 732-735. [9] ZHANG Z Q, DONG P, TUO H Y, et al. Robust variational Bayesian adaptive cubature Kalman filtering algorithm for simultaneous localization and mapping with heavy-tailed noise [J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(1): 76-87. [10] FENG D Q, WANG C Q, HE C L, et al. Kalman-filter-based integration of IMU and UWB for high-accuracy indoor positioning and navigation [J]. IEEE Internet of Things Journal, 2020, 7(4): 3133-3146. [11] YAO L, WU Y W A, YAO L, et al. An integrated IMU and UWB sensor based indoor positioning system [C]//2017 International Conference on Indoor Positioning and Indoor Navigation. Sapporo: IEEE, 2017: 1-8. [12] BENINI A, MANCINI A, LONGHI S. An IMU/UWB/vision-based extended Kalman filter for mini-UAV localization in indoor environment using 802.15.4a wireless sensor network [J]. Journal of Intelligent & Robotic Systems, 2013, 70(1/2/3/4): 461-476. [13] LI J X, BI Y C, LI K, et al. Accurate 3D localization for MAV swarms by UWB and IMU fusion [C]//2018 IEEE 14th International Conference on Control and Automation. Anchorage: IEEE, 2018: 100-105. [14] KALMAN R E. A new approach to linear filtering and prediction problems [J]. Journal of Basic Engineering, 1960, 82(1): 35-45. [15] KALMAN R E, BUCY R S. New results in linear filtering and prediction theory [J]. Journal of Basic Engineering, 1961, 83(1): 95-108. [16] WONG J Y. Theory of ground vehicles [M]. 5th ed. Hoboken: John Wiley & Sons, Inc., 2022. [17] LIU Z Y, QU B. Study on display technology and test methods for automobile [J]. Telecommunications Network Technology, 2016(6): 16-20 (in Chinese). [18] WILK M B, GNANADESIKAN R. Probability plotting methods for the analysis of data [J]. Biometrika, 1968, 55(1): 1-17. [19] KOHLBRECHER S, VON STRYK O, MEYER J, et al. A flexible and scalable SLAM system with full 3D motion estimation [C]//2011 IEEE International Symposium on Safety, Security, and Rescue Robotics. Kyoto: IEEE, 2011: 155-160. |
[1] | . 血管介入手术路径规划及三维视觉导航[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 472-481. |
[2] | . 基于毫米波雷达的智能心率提取方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 493-498. |
[3] | . 基于变换学习和结构化低秩模型的并行成像快速重构算法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 499-509. |
[4] | . 用于内窥镜图像息肉检测的实时轻量级卷积神经网络[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 521-534. |
[5] | . 基于改进加权融合的胶囊内镜肠道内壁图像拼接方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 535-544. |
[6] | . 基于外积有效和字典学习的改进灵敏度编码重建算法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 555-565. |
[7] | . 迁移学习和注意机制融合用于CT图像COVID-19病灶分割的计算机辅助诊断[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 566-581. |
[8] | . 基于蝶形空洞几何蒸馏的磁共振成像重建[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 591-599. |
[9] | . 基于改进差分进化极限学习机的锂离子电池健康状态估计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 252-261. |
[10] | . 基于改进FCOS算法的钢丝绳芯输送带损伤X射线图像检测[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 309-318. |
[11] | . 基于双流自编码器的无监督动作识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 330-336. |
[12] | . 基于空间特征学习与多粒度特征融合的行人重识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 363-374. |
[13] | 赵艳飞1,2,3, 肖鹏4, 王景川1,2,3, 郭锐4. 基于局部语义地图的移动机器人半自主导航[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 27-33. |
[14] | 傅航1,许江长 1,李寅炜2,4,周慧芳2,4,陈晓军1,3. 基于视频图像增强现实的视神经管减压手术导航系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 34-42. |
[15] | BALASUBRAMANIAN S1, NARUK Mahaveer Singh2, TEWARI Gaurav3. 基于经验小波变换优化自适应混合滤波器的心电信号去噪[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 66-80. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||