J Shanghai Jiaotong Univ Sci ›› 2023, Vol. 28 ›› Issue (1): 86-99.doi: 10.1007/s12204-023-2572-4
收稿日期:
2021-12-30
出版日期:
2023-01-28
发布日期:
2023-02-10
LI Erchao∗ (李二超), QI Kuankuan (齐款款)
Received:
2021-12-30
Online:
2023-01-28
Published:
2023-02-10
摘要: 针对传统蚁群算法路径搜索方向和视野范围、无法找到最短路径、容易发生死锁和路径不平滑等问题,提出一种新环境下的蚁群算法。首先,提取障碍物特征点对栅格地图环境进行预处理,能够避免进入陷阱,从而解决死锁问题;其次,以这些特征点为寻路访问节点,减少节点的访问,待选移动的方向更多,待选特征点的位置决定寻路视野范围;然后,以特征点为基础,采用信息素不平等分布和双向并行路径搜索,提高解的构造效率,采用改进启发函数,增强路径搜索的引导作用,动态调整信息素挥发系数避免算法陷入早熟;接着,采用贝塞尔曲线平滑路径,得到的路径平滑且最短;最后,在不同复杂程度和不同尺度的栅格地图中,与传统蚁群算法和其他改进蚁群算法进行仿真对比,验证了本文算法的可行性和优越性。
中图分类号:
. 基于栅格图特征点提取下的蚁群算法路径规划[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 86-99.
LI Erchao∗ (李二超), QI Kuankuan (齐款款). Ant Colony Algorithm Path Planning Based on Grid Feature Point Extraction[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 86-99.
[1] CHEN W W, YAN G Z, WANG Z W, et al. Intestinal biopsy endoscopic robot system [J]. Journal of Shanghai Jiao Tong University, 2014, 48(5): 674-678 (in Chinese). [2] GARDU?O-APARICIO M, RODRíGUEZRESéNDIZ J, MACIAS-BOBADILLA G, et al. A multidisciplinary industrial robot approach forteaching mechatronics-related courses [J]. IEEE Transactions on Education, 2018, 61(1): 55-62. [3] PALACIN J, SALSE J A, VALGANON I, et al. Building a mobile robot for a floor-cleaning operation in domestic environments [J]. IEEE Transactions on Instrumentation and Measurement, 2004, 53(5): 1418-1424. [4] WANG B Y, LIU Z, LI Q B, et al. Mobile robot path planning in dynamic environments through globally guided reinforcement learning [J]. IEEE Robotics and Automation Letters, 2020, 5(4): 6932-6939. [5] LI S F, CHENG C Y. Particle swarm optimization with fitness adjustment parameters [J]. Computers & Industrial Engineering, 2017, 113: 831-841. [6] SONG B Y, WANG Z D, SHENG L. A new genetic algorithm approach to smooth path planning for mobile robots [J]. Assembly Automation, 2016, 36(2): 138-145. [7] ZHANG A, LI C, BI W H. Rectangle expansion A? pathfinding for grid maps [J]. Chinese Journal of Aeronautics, 2016, 29(5): 1385-1396. [8] ZHANG Y X, WANG Y Q, LI S, et al. Global path planning for AUV based on charts and the improved particle swarm optimization algorithm [J]. Robot, 2020, 42(1): 120-128 (in Chinese). [9] BAO H, ZHU H T, LIU D. Path planning of mobile robot based on ±3σ normal probability interval population division using genetic ant-colony algorithm [J]. Control and Decision, 2021, 36(12): 2861-2870 (in Chinese). [10] DUCHO F, BABINEC A, KAJAN M, et al. Path planning with modified a star algorithm for a mobile robot [J]. Procedia Engineering, 2014, 96: 59-69. [11] SUN L. A real-time collision-free path planning of a rust removal robot using an improved neural network [J]. Journal of Shanghai Jiao Tong University (Science), 2017, 22(5): 633-640. [12] ZHANG Y, QUAN H, WEN J F. Mobile robot path planning based on the wolf ant colony hybrid algorithm [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(1): 127-132 (in Chinese). [13] ZHANG Q, CHEN B K, LIU X Y, et al. Ant colony optimization with improved potential field heuristic for robot path planning [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 23-32 (in Chinese). [14] XU L, FU W H, JIANG W H, et al. Mobile robots path planning based on 16-directions 24-neighborhoods improved ant colony algorithm [J]. Control and Decision, 2021, 36(5): 1137-1146 (in Chinese). [15] ZHAO J P, GAO X W, LIU J G, et al. Parameters self-adaptive fuzzy ant colony optimization algorithm with searching window for path planning of mobile robot [J]. Control and Decision, 2011, 26(7): 1096-1100 (in Chinese). [16] WU X X, WEI G L, SONG Y, et al. Improved ACO based path planning with rollback and death strategies [J]. Systems Science & Control Engineering, 2018, 6(1): 102-107. [17] KANG B, WANG X H, LIU F. Path planning of searching robot based on improved ant colony algorithm [J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(4): 1062-1068 (in Chinese). [18] AO B Q, YANG S, YE Z H. Improved ant colony algorithm for unmanned surface vehicle smooth path planning [J]. Control Theory & Applications, 2021(7): 1006-1014 (in Chinese). [19] PAN J, WANG X S, CHENG Y H. Improved ant colony algorithm for mobile robot path planning [J]. Journal of China University of Mining & Technology, 2012, 41(1): 108-113 (in Chinese). [20] ZHANG S Y, GUO B L, CHEN L Z, et al. Path planning of intelligent fire evacuation map based on bidirectional ant colony algorithm [J]. Computer Engineering and Applications, 2021(14): 259-266 (in Chinese). [21] HU H M, YU X C. Improved ant colony path planning algorithm based on bidirectional search strategy [J]. Agricultural Equipment & Vehicle Engineering, 2019, 57(7): 9-12 (in Chinese). [22] ZHAO J, TANG Y F, JIANG G P, et al. Mobile robot path planning based on improved ant colony algorithm [J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2019, 39(6): 73-78 (in Chinese). [23] YOU H L, LU Z Q. A fast ant colony algorithm for α, β and ρ adaptive adjustment [J]. Manufacturing Automation, 2018, 40(6): 99-102 (in Chinese). |
[1] | . 近红外胶囊机器人无线能量接收线圈优化设计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 425-432. |
[2] | . 多机协调吊运系统的绳索矢量碰撞检测算法研究[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 319-329. |
[3] | . 复杂光照下被动式双目光学运动捕捉技术[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 352-362. |
[4] | . 基于RGB-D图像的机器人抓取检测高效全卷积网络和优化方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 399-416. |
[5] | 赵艳飞1,2,3, 肖鹏4, 王景川1,2,3, 郭锐4. 基于局部语义地图的移动机器人半自主导航[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 27-33. |
[6] | 傅航1,许江长 1,李寅炜2,4,周慧芳2,4,陈晓军1,3. 基于视频图像增强现实的视神经管减压手术导航系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 34-42. |
[7] | 周涵巍1,朱心平1,马有为2,王坤东1. 低延时纤维胆道镜机器人驱动控制系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 43-52. |
[8] | 贺贵松,黄学功,李峰. 基于主被动联合驱动的助力型踝关节外骨骼机器人的协调性设计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 197-208. |
[9] | 刘月笙, 贺宁, 贺利乐, 张译文, 习坤, 张梦芮. 基于机器学习的移动机器人路径跟踪MPC控制器参数自整定[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1028-1036. |
[10] | 董玉博1, 崔涛1, 周禹帆1, 宋勋2, 祝月2, 董鹏1. 基于长周期极坐标系追击问题的多智能体强化学习奖赏函数设计方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 646-655. |
[11] | 杜海阔1,2, 郭正玉3,4, 章露露1,2, 蔡云泽1,2. 基于多目标松散同步搜索的多目标多智能体异步路径规划[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 667-677. |
[12] | 董德金1,2,董诗音3,章露露1,2,蔡云泽1,2. 基于A-Star和DWA算法的野外环境路径规划[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 725-736. |
[13] | 李舒逸, 李旻哲, 敬忠良. 动态环境下基于改进DQN的多智能体路径规划方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 601-612. |
[14] | 徐亚茹1,2,李克鸿1,2,商新娜2,金晓明1,2,刘荣3,张建成1,2. 基于影响系数法的机器人动力学方程约束关系建立[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 450-456. |
[15] | 赵英策1,张广浩2,邢正宇2,李建勋2. 面向确定进攻对手策略的层次强化学习对抗算法研究[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 471-479. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||