[1] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[2] READING C, HARAKEH A, CHAE J L, et al. Categorical depth distribution network for monocular 3D object detection [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 8551-8560.
[3] ABBAS S A, ZISSERMAN A. A geometric approach to obtain a bird’s eye view from an image [C]//2019 IEEE/CVF International Conference on Computer Vision Workshop. Seoul: IEEE, 2019: 4095-4104.
[4] LIN C C, WANG M S. A vision based top-view transformation model for a vehicle parking assistant [J]. Sensors, 2012, 12(4): 4431-4446.
[5] DENG L Y, YANG M, LI H, et al. Restricted deformable convolution-based road scene semantic segmentation using surround view cameras [J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(10): 4350-4362.
[6] S?MANN T, AMENDE K, MILZ S, et al. Efficient semantic segmentation for visual bird’s-eye view interpretation [M]//Intelligent autonomous systems 15. Cham: Springer, 2018: 679-688.
[7] PAN B W, SUN J K, LEUNG H Y T, et al. Crossview semantic segmentation for sensing surroundings [J]. IEEE Robotics and Automation Letters, 2020, 5(3): 4867-4873.
[8] LU C Y, VAN DE MOLENGRAFT M J G, DUBBELMAN G. Monocular semantic occupancy grid mapping with convolutional variational encoder–decoder networks [J]. IEEE Robotics and Automation Letters, 2019, 4(2): 445-452.
[9] SCHULTER S, ZHAI M H, JACOBS N, et al. Learning to look around objects for top-view representations of outdoor scenes [M]//Computer vision – ECCV 2018. Cham: Springer, 2018: 815-831.
[10] MANI K, DAGA S, GARG S, et al. MonoLayout: Amodal scene layout from a single image [C]//2020 IEEE Winter Conference on Applications of Computer Vision. Snowmass: IEEE, 2020: 1678-1686.
[11] RODDICK T, CIPOLLA R. Predicting semantic map representations from images using pyramid occupancy networks [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11135-11144.
[12] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation [M]//Medical image computing and computerassisted intervention – MICCAI 2015. Cham: Springer, 2015: 234-241.
[13] DING X H, ZHANG X Y, MA N N, et al. RepVGG: making VGG-style ConvNets great again [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13728-13737.
[14] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss fordense object detection [C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2999-3007.
[15] CAESAR H, BANKITI V, LANG A H, et al. nuScenes: A multimodal dataset for autonomous driving [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11618-11628.
[16] KINGMA D P, BA J. Adam: A method for stochastic optimization[DB/OL]. (2017-01-30). https://arxiv.org/abs/1412.6980.
[17] GARCIA-GARCIA A, ORTS-ESCOLANO S, OPREA S, et al. A review on deep learning techniques applied to semantic segmentation [DB/OL]. (2017-04-22). https://arxiv.org/abs/1704.06857.
|