J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (1): 66-80.doi: 10.1007/s12204-023-2591-1
BALASUBRAMANIAN S1, NARUK Mahaveer Singh2, TEWARI Gaurav3
接受日期:
2022-11-22
出版日期:
2025-01-28
发布日期:
2025-01-28
BALASUBRAMANIAN S1*, NARUKA Mahaveer Singh2, TEWARI Gaurav3
Accepted:
2022-11-22
Online:
2025-01-28
Published:
2025-01-28
摘要: 心血管疾病是世界上最主要的死亡原因。几十年来,人类心脏的健康一直是一个令人感兴趣的话题。心电图(ECG)信号是判断心脏健康状况的一种综合性的无创方法。许多健康医师利用心电图信号来确定心脏的关键信息。本文将群体智能方法应用于生物医学信号处理领域,以增强自适应混合滤波器和经验小波变换(EWT)。首先对输入心电信号加入高斯白噪声,然后对其进行EWT;采用提出的自适应混合滤波器对ECG信号进行去噪处理。利用蜜獾优化(HBO)算法优化EWT窗函数和自适应混合滤波器权重参数。所提方法在MATLAB 2018a中使用MIT-BIH数据集进行仿真,该数据集包含高斯白噪声、肌电图噪声和电极运动伪影噪声。与基于递归最小二乘的自适应滤波器、多通道最小均方方法和离散小波变换方法进行比较,验证了HBO方法的有效性。实验结果表明,在EWT和自适应混合滤波的支持下,HBO方法可以有效应用于心血管信号去噪。
中图分类号:
BALASUBRAMANIAN S1, NARUK Mahaveer Singh2, TEWARI Gaurav3. 基于经验小波变换优化自适应混合滤波器的心电信号去噪[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 66-80.
BALASUBRAMANIAN S1*, NARUKA Mahaveer Singh2, TEWARI Gaurav3. Electrocardiogram Signal Denoising Using Optimized Adaptive Hybrid Filter with Empirical Wavelet Transform[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 66-80.
[1] WANG G, YANG L, LIU M, et al. ECG signal denoising based on deep factor analysis [J]. Biomedical Signal Processing and Control, 2020, 57: 101824. [2] LASTRE-DOM′INGUEZ C, SHMALIY Y S, IBARRA-MANZANO O, et al. ECG signal denoising and features extraction using unbiased FIR smoothing [J]. BioMed Research International, 2019, 2019: 2608547. [3] CHIANG H T, HSIEH Y Y, FU S W, et al. Noise reduction in ECG signals using fully convolutional denoising autoencoders [J]. IEEE Access, 2019, 7: 60806-60813. [4] CHATTERJEE S, THAKUR R S, YADAV R N, et al. Review of noise removal techniques in ECG signals [J]. IET Signal Processing, 2020, 14(9): 569-590. [5] BING P P, LIU W, ZHANG Z H. DeepCEDNet: An efficient deep convolutional encoder-decoder networks for ECG signal enhancement [J]. IEEE Access, 2021, 9: 56699-56708. [6] ZHANG D Y, WANG S S, LI F, et al. An efficient ECG denoising method based on empirical mode decomposition, sample entropy, and improved threshold function [J]. Wireless Communications and Mobile Computing, 2020, 2020: 1-11. [7] MUKHERJEE P, BAKSHI A. System for ECG signal denoising [C]//2020 International Conference on Communication and Signal Processing. Chennai: IEEE, 2020: 321-325. [8] SUNDARARAJ V. Optimised denoising scheme via opposition-based self-adaptive learning PSO algorithm for wavelet-based ECG signal noise reduction [J]. International Journal of Biomedical Engineering and Technology, 2019, 31(4): 325. [9] CHANDRA M, GOEL P, ANAND A, et al. Design and analysis of improved high-speed adaptive filter architectures for ECG signal denoising [J]. Biomedical Signal Processing and Control, 2021, 63: 102221. [10] VARGAS R N, VEIGA A C P. Electrocardiogram signal denoising by a new noise variation estimate [J]. Research on Biomedical Engineering, 2020, 36(1): 13-20. [11] HAO H Q, LIU M, XIONG P, et al. Multi-lead modelbased ECG signal denoising by guided filter [J]. Engineering Applications of Artificial Intelligence, 2019, 79: 34-44. [12] BING P P, LIU W, WANG Z, et al. Noise reduction in ECG signal using an effective hybrid scheme [J]. IEEE Access, 2020, 8: 160790-160801. [13] KUMAR A, TOMAR H, MEHLA V K, et al. Stationary wavelet transform based ECG signal denoising method [J]. ISA Transactions, 2021, 114: 251-262. [14] GUPTA V, MITTAL M. Arrhythmia detection in ECG signal using fractional wavelet transform with principal component analysis [J]. Journal of the Institution of Engineers (India): Series B, 2020, 101(5): 451-461. [15] MANJU B R, SNEHA M R. ECG denoising using Wiener filter and Kalman filter [J]. Procedia Computer Science, 2020, 171: 273-281. [16] WASIMUDDIN M, ELLEITHY K, ABUZNEID A S, et al. Stages-based ECG signal analysis from traditional signal processing to machine learning approaches: A survey [J]. IEEE Access, 2020, 8: 177782- 177803. [17] WIDROW B, GLOVER J R, MCCOOL J M, et al. Adaptive noise cancelling: Principles and applications [J]. Proceedings of the IEEE, 1975, 63(12): 1692-1716. [18] SHELTON L Y, CANO G G, COAST D A, et al. Detection of late potentials by adaptive filtering [J]. Journal of Electrocardiology, 1990, 23: 138-143. [19] MIRZA A, KABIR S M, AYUB S, et al. Impulsive Noise Cancellation of ECG signal based on SSRLS [J]. Procedia Computer Science, 2015, 62: 196-202. [20] DONG S P, YUAN M, WANG Q S, et al. A modified empirical wavelet transform for acoustic emission signal decomposition in structural health monitoring [J]. Sensors, 2018, 18(5): 1645. [21] WANG D, ZHAO Y, YI C, et al. Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings [J]. Mechanical Systems and Signal Processing, 2018, 101: 292-308. [22] LIU W, CHEN W. Recent advancements in empirical wavelet transform and its applications [J]. IEEE Access, 2019, 7: 103770-103780. [23] FRANCIS A, MURUGANANTHAM C. An adaptive denoising method using empirical wavelet transform [J]. International Journal of Computer Applications, 2015, 117(21): 18-20. [24] DAS M, KUMAR R, SAHANA B. Implementation of effective hybrid window function for E.C.G signal denoising [J]. Traitement Du Signal, 2020, 37(1): 119-128. [25] HASHIM F A, HOUSSEIN E H, HUSSAIN K, et al. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems [J]. Mathematics and Computers in Simulation, 2022, 192: 84-110. |
[1] | . 血管介入手术路径规划及三维视觉导航[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 472-481. |
[2] | . 基于毫米波雷达的智能心率提取方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 493-498. |
[3] | . 基于变换学习和结构化低秩模型的并行成像快速重构算法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 499-509. |
[4] | . 用于内窥镜图像息肉检测的实时轻量级卷积神经网络[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 521-534. |
[5] | . 基于改进加权融合的胶囊内镜肠道内壁图像拼接方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 535-544. |
[6] | . 基于外积有效和字典学习的改进灵敏度编码重建算法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 555-565. |
[7] | . 迁移学习和注意机制融合用于CT图像COVID-19病灶分割的计算机辅助诊断[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 566-581. |
[8] | . 基于蝶形空洞几何蒸馏的磁共振成像重建[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 591-599. |
[9] | . 基于改进差分进化极限学习机的锂离子电池健康状态估计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 252-261. |
[10] | . 基于改进FCOS算法的钢丝绳芯输送带损伤X射线图像检测[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 309-318. |
[11] | . 基于双流自编码器的无监督动作识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 330-336. |
[12] | . 基于空间特征学习与多粒度特征融合的行人重识别[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 363-374. |
[13] | 丁黎辉1, 2, 付立军1, 3, 杨光4, 5, 6, 万林4, 5, 常志军7. 基于视频的婴儿癫痫性痉挛综合征检测:建模、检测与评估[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 1-9. |
[14] | 孔会扬1, 王殊轶1, 张璨2, 陈赞2, 3. 手术导板辅助增强现实技术与传统技术在椎弓根螺钉放置中的比较[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 10-17. |
[15] | 赵艳飞1,2,3, 肖鹏4, 王景川1,2,3, 郭锐4. 基于局部语义地图的移动机器人半自主导航[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 27-33. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 5
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 370
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||