J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (6): 1191-1201.doi: 10.1007/s12204-022-2470-1
夏杨1,任光辉2,万缘1,茅旭初1
收稿日期:
2021-06-21
接受日期:
2021-07-23
出版日期:
2024-11-28
发布日期:
2024-11-28
XIA Yang1 (夏杨), REN Guanghui2 (任光辉), WAN Yuan1 (万缘), MAO Xuchu1∗ (茅旭初)
Received:
2021-06-21
Accepted:
2021-07-23
Online:
2024-11-28
Published:
2024-11-28
摘要: 在中长基线情况下,由于基站与观测站之间的距离较远,实时动态(RTK)定位的整数模糊度固定率较低。此外,差分处理后的大气残差也无法忽略不计。为了修正大气残差,提出了一种基于扩展卡尔曼滤波(EKF)算法的GPS/BDS/Galileo/GLONASS四系统融合的实时动态定位算法。在实现多种全球导航卫星系统(GNSS)的时空统一后,引入了基于扩展卡尔曼滤波模型的大气误差参数估计,并利用最小二乘降相关平差算法(LAMBDA)计算整数模糊度。经过对不同基线进行实验,所提出的实时动态定位算法在中长基线情况下能够实现厘米级的定位精度。此外,求解固定解所需时间比传统实时动态定位算法更短。
中图分类号:
夏杨1, 任光辉2, 万缘1, 茅旭初1. 基于扩展卡尔曼滤波校正模型的中长基线多GNSS融合实时动态算法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1191-1201.
XIA Yang1 (夏杨), REN Guanghui2 (任光辉), WAN Yuan1 (万缘), MAO Xuchu1∗ (茅旭初). Multi-GNSS Fusion Real-Time Kinematic Algorithm Based on Extended Kalman Filter Correction Model for Medium-Long Baselines[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1191-1201.
[1] TIAN Y J, SUI L F, XIAO G R, et al. Analysis of Galileo/BDS/GPS signals and RTK performance [J]. GPS Solutions, 2019, 23(2): 1-16. [2] ODIJK D, NADARAJAH N, ZAMINPARDAZ S, et al. GPS, Galileo, QZSS and IRNSS differential ISBs:Estimation and application [J]. GPS Solutions, 2017,21(2): 439-450. [3] AN X D, MENG X L, JIANG W P. Multi-constellation GNSS precise point positioning with multi-frequency raw observations and dual-frequency observations of ionospheric-free linear combination [J]. Satellite Navigation, 2020, 1: 7. [4] LIU X, ZHANG S B, ZHANG Q Z, et al. A fast satellite selection algorithm with floating high cut-off elevation angle based on ADOP for instantaneous multi-GNSS single-frequency relative positioning [J]. Advances in Space Research, 2019, 63(3): 1234-1252. [5] YAO Y B, LIU L, KONG J, et al. Estimation of BDS DCB combining GIM and different zero-mean constraints [J]. Acta Geodaetica et Cartographica Sinica,2017, 46(2): 135-143(in Chinese). [6] GUO X, GENG J H, CHEN X Y, et al. Enhanced orbit determination for formation-flying satellites through integrated single- and double-difference GPS ambiguity resolution [J]. GPS Solutions, 2019, 24: 14. [7] ZHANG X H, HU J H, REN X D. New progress of PPP/PPP-RTK and positioning performance comparison of BDS/GNSS PPP [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1084-1100. [8] GAO Y J, LV Z W, ZHOU P J, et al. Adaptive robust filtering algorithm for BDS medium and long baseline three carrier ambiguity resolution [J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 53-61. [9] WANG X, LIU W X, SUN G F. An improved geometry-free three carrier ambiguity resolution method for the BeiDou navigation satellite system [J].Journal of Navigation, 2016, 69(6): 1393-1408. [10] WU G B, CHEN J P, WU X M, et al. Modeling and assessment of regional atmospheric corrections based on undifferenced and uncombined PPP-RTK [J].Acta Geodaetica et Cartographica Sinica, 2020, 49(11):1407-1418(in Chinese). [11] CHENG L Y, WANG W, LIU J N, et al. GNSS receiver-related pseudorange biases: Characteristics and effects on wide-lane ambiguity resolution [J]. Remote Sensing, 2021, 13(3): 428. [12] BASILE F, MOORE T, HILL C, et al. GPS and Galileo triple-carrier ionosphere-free combinations for improved convergence in precise point positioning [J].Journal of Navigation, 2021, 74(1): 5-23. [13] LIU Y Y, YE S R, JIANG P, et al. Combining GPS + GLONASS observations to improve the fixing percentage and precision of long baselines with limited data [J]. Advances in Space Research, 2016, 57(5): 1258-1267. [14] ZHU J S, LIU Y Y, WANG B, et al. Improved method for GLONASS long baseline ambiguity resolution without inter-frequency code bias calibration [J]. Remote Sensing, 2018, 10(8): 1223. [15] ZHANG Q Y, LIU Y, XIA J M. Space-borne GNSS-Rionospheric delay error elimination by optimal spatial filtering [J]. Sensors, 2020, 20(19): 5535. [16] MAO J, WANG Q, LIANG Y B, et al. A new simplified zenith tropospheric delay model for real-time GNSS applications [J]. GPS Solutions, 2021, 25(2): 43. [17] LI S, XU T H, JIANG N, et al. Regional zenith tropospheric delay modeling based on least squares support vector machine using GNSS and ERA5 data [J]. Remote Sensing, 2021, 13(5): 1004. [18] HAO Y S, XU A G, SUI X, et al. A modified extended Kalman filter for a two-antenna GPS/INS vehicular navigation system [J]. Sensors, 2018, 18(11): 3809. |
[1] | 杜宁, 吴树范, 陈占胜, 陈文晖, 王世耀, 徐家国, 秦栋栋. 卫星对空中动态目标凝视成像姿态规划方法[J]. 上海交通大学学报, 2024, 58(4): 411-418. |
[2] | 黎定佳1,2,3,4, 王重阳1,2,3, 郭伟5, 王志东6, 张忠涛5, 刘浩1,2,3. 基于少量多核光纤光栅传感器的单孔连续体手术机器人形状感知[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 312-322. |
[3] | . 基于多传感器数据融合的室内车辆定位[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(1): 77-85. |
[4] | 黄健,严胜刚. 未知声速下长基线系统定位修正算法[J]. 上海交通大学学报(自然版), 2019, 53(3): 366-372. |
[5] | 胡兵,杨明,郭林栋,王春香,王冰. 基于地面快速鲁棒特征的智能车全局定位方法[J]. 上海交通大学学报(自然版), 2019, 53(2): 203-208. |
[6] | 赵国荣,刘帅,高超,曾宾. 基于组合载波相位的飞行器姿态确定[J]. 上海交通大学学报(自然版), 2017, 51(8): 977-983. |
[7] | 任光辉,茅旭初. 多约束条件的全球定位系统单频单历元短基线定向技术与实现[J]. 上海交通大学学报(自然版), 2014, 48(03): 335-340. |
[8] | 赵文骏,茅旭初. 一种用于高动态全球定位系统信号跟踪的新模型[J]. 上海交通大学学报(自然版), 2014, 48(03): 323-327. |
[9] | 李伟,刘美红,段登平. 基于简化差分插值滤波的编队卫星相对导航[J]. 上海交通大学学报(自然版), 2014, 48(02): 229-233. |
[10] | 黄欢, 杨明, 邬顺捷. 模拟循环系统中的主动脉流间接测量 [J]. 上海交通大学学报(自然版), 2012, 46(07): 1138-1141. |
[11] | 颜翚, 葛彤, 杨柯, 王旭阳. 水下攻泥器随钻姿态惯性测量方法[J]. 上海交通大学学报(自然版), 2012, 46(03): 446-450. |
[12] | 胡文1, 胡春2, 王石刚1. 大型系泊链五环长的视觉测量系统[J]. 上海交通大学学报(自然版), 2011, 45(10): 1552-1556. |
[13] | 梁昆,杨明,王春香,王冰. 基于低精度GPS的智能车视觉导航方法 [J]. 上海交通大学学报(自然版), 2011, 45(02): 168-0172. |
[14] | 郝燕玲,孟凡彬,王素鑫,孙枫. 一种新的多机动目标跟踪的GMPHD滤波算法[J]. 上海交通大学学报(自然版), 2010, 44(07): 873-0877. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||